

IBM VSE/Enterprise Systems Architecture IBM

Guide to System Functions
Version 2 Release 4

 SC33-6711-00

IBM VSE/Enterprise Systems Architecture IBM

Guide to System Functions
Version 2 Release 4

 SC33-6711-00

 Note!

Before using this information and the product ist supports, be sure to read the general information under “Notices” on page xi.

Second Edition (June 1999)

This edition applies to Version 2 Release 4 of IBM Virtual Storage Extended/Enterprise Systems Architecture (VSE/ESA), Program
Number 5690-VSE, and to all subsequent releases and modifications until otherwise indicated in new editions.

Order publications through your IBM representative or the IBM branch office serving your locality. Publications are not stocked at the
addresses given below.

A form for readers' comments is provided at the back of this publication. If the form has been removed, address your comments to:

IBM Corporation IBM Deutschland Entwicklung GmbH
Attn: Dept ECJ-BP/ðð3D or to: Department 3248
63ðð Diagonal Highway Schoenaicher Strasse 22ð
Boulder, CO 8ð3ð1 D-71ð32 Boeblingen
U.S.A. Federal Republic of Germany

When you send information to IBM, you grant IBM a non-exclusive right to use or distribute the information in any way it believes
appropriate without incurring any obligation to you.

 Copyright International Business Machines Corporation 1984, 1999. All rights reserved.
Note to U.S. Government Users — Documentation related to restricted rights — Use, duplication or disclosure is subject to
restrictions set forth in GSA ADP Schedule Contract with IBM Corp.

 Contents

Notices . xi
Programming Interface Information . xi
Trademarks and Service Marks . xii

About This Book . xiii
Who Should Use This Book . xiii
How to Use This Book . xiii
Where to Find More Information . xiii

Summary of Changes . xv

Chapter 1. Storage Management . 1
Virtual Storage Concept . 1

Page Management . 2
Relating Virtual Storage to Locations in Processor Storage 3

Address Space Layout . 5
Virtual Address Spaces versus Real Address Space 6
Layout of a Virtual Address Space . 7
Partition Allocation and Program Size Considerations 8
GETVIS Areas . 10
Layout of a Static Address Space and its GETVIS Areas 12
Layout of a Dynamic Address Space and its GETVIS Areas 13
Defining Real Storage . 13
Real Storage Layout . 14

Executing Programs in Virtual and Real Mode 15
Execution in Virtual Mode . 15
Execution in Real Mode . 15
Processor Storage Allocation for Real Mode Execution 15
Fixing Pages in Processor Storage . 16

Chapter 2. Starting the System . 17
ASI Procedures . 17

Contents of an ASI IPL Procedure . 18
Contents of ASI JCL Procedures . 19
Naming Conventions for ASI Procedures . 20

Starting Up the System . 21
The ASI Master Procedure ($ASIPROC) . 21

Cataloging an ASI Master Procedure . 23
Establishing the Communication Device for IPL 24

Console Selection for Initial Installation . 24
Console Selection when Performing a Normal IPL 24
IPL Communication Device List . 25

Interrupt IPL Processing for Modifications . 26
Restrictions when Using the Integrated Console 27
The IPL Load Parameter . 27
Interrupt and Restart the IPL Process . 28
Modifying IPL Parameters . 29

Loading Phases into the SVA . 32
SVA (24-Bit) and SVA (31-Bit) . 33
Automatic SVA Loading During System Startup 33

 Copyright IBM Corp. 1984, 1999 iii

Loading Single Phases or Using a Load List 34
Creating an SVA Load List . 35
Notes on the SVA Command . 35
Notes on Using the SET SDL Command . 36
Replacing Phases Stored in the SVA . 36

User-Defined Processing after IPL . 37

Chapter 3. Controlling Jobs . 39
Introduction . 39

Relating Files to Your Program . 39
Processing of File Labels . 42
The Label Information Area . 44

Defining a Job . 45
The JOB Statement . 46
The End-of-Job (/&) Statement . 47

Job Streams . 47
PAUSE Statement . 48
PAUSE Command . 48

Job Control for Device Assignments . 48
Logical Units . 49
Types of Device Assignments . 50
Device Assignments in a Multiprogramming System 51
Shared Assignments . 51
Additional Assignment Considerations . 53

Job Control for Label Information . 54
Label Information for Files on Disk Devices 54
Label Information for Files on Magnetic Tape 57
Label Information for Files on Diskette Devices 58
Storing Label Information . 59
Adding and Deleting Label Information . 61
Label Information Search Order . 61

Controlling Magnetic Tape . 62
Controlling Printed Output . 63

Controlling Printed Output on an IBM 3800 Printing Subsystem 64
Processing a Program . 64

Executing Cataloged Programs . 67
Defining Options for Program Execution . 67
Communicating with Application Programs via Job Control 68
Executing in Virtual or Real Mode . 69
Handling of System Input and Output . 73

Using Conditional Job Control . 76
Statements for Conditional Job Control . 77
Abnormal Termination of a Job Stream . 81

Using Cataloged Procedures . 83
SYSIPT Data in Cataloged Procedures . 83
Cataloging Partition-Related Procedures . 84
Several Job Steps in One Procedure . 85
Using Symbolic Parameters . 87
Using Nested Procedures . 91

Chapter 4. Using VSE Libraries . 97
Introducing the VSE Library Concept . 97

Library Structure . 98
VSE Library Types . 98

iv IBM VSE/ESA Guide to System Functions

Year 2000 Support . 101
Defining a Library, Sublibrary, or a SYSRES File 102

Private Libraries in Non-VSAM-Managed Space 102
Private Libraries in VSAM-Managed Space 102
Defining Sublibraries . 103
Defining Additional SYSRES Files . 104

Establishing a Library Access Definition . 105
Cataloging Members of Type PHASE . 105
Cataloging Members of Type DUMP . 105
Library Chaining . 105
Permanent versus Temporary Library Access Definitions 106
The Search Sequence for Phases . 107
Resetting a Library Access Definition . 108
Displaying Library Access Definitions . 108

Accessing Members Controlled by MSHP . 108
The Librarian Program . 109

Return Codes . 109
Examples of Conditional Command Execution 110
Interactive Execution . 111
Accessing Sublibraries . 111
Generic Notation . 111

Librarian Commands . 112
Backup a SYSRES File, Library, Sublibrary, or Member 112
Catalog a Member . 119
Change the Reuse Attribute of a Sublibrary 125
Compare Libraries, Sublibraries, or Members 125
Copy or Move a Library, Sublibrary or Member 126
Define a Library, Sublibrary, or a SYSRES File 130
Delete a Library, Sublibrary, or a Member 130
Input Command when Punching a Member 131
List Library, Sublibrary, or Member Information 131
Lock a Member . 141
Move a Library, Sublibrary, or Member . 144
Punch and Re-Catalog a Member . 144
Release Space for a Library or Sublibrary 145
Rename a Sublibrary or a Member . 146
Restore a SYSRES File, Library, Sublibrary, or a Member 148
Search for Members . 154
Test a Library or Sublibrary . 157
Unlock a Member . 157
Update a Member . 157

Library Access for Application Programs . 159
Accessing Member Data . 160
Retrieving Status Information . 160
Return Code Conventions . 161
Example of a STATE Member Request . 162
Example of OPEN/GET/CLOSE Requests 169

Processing Macros with the ESERV Program 173
High Level Assembler Considerations . 174

Using the High Level Assembler Library Exit for Processing E-Decks . . . 174
Function Description of Phase IPKVX . 178

Chapter 5. Linking Programs . 181
Structure of a Program . 182

 Contents v

Source Books . 182
Object Modules . 183
Phases . 184
Year 2000 Support . 185

Basic Applications of the Linkage Editor . 185
Cataloging Phases into a Sublibrary . 185
Link-Edit and Execute . 187
Assemble (or Compile), Link-Edit, and Execute 188

Processing Requirements for the Linkage Editor 189
Symbolic Units Required . 189

Preparing Input for the Linkage Editor . 189
Naming a Phase . 190
Defining a Load Address for a Phase . 191
Linkage Editor Input - Source and Sequence 193
Linkage Editor Storage Requirements . 194

Using the AUTOLINK Function . 194
Suppressing the AUTOLINK Feature . 195

Specifying Linkage Editor Helps . 195
Obtaining a Storage Map . 196
Terminating an Erroneous Job . 196

Designing an Overlay Program . 196
Relating Control Sections to Phases . 196
Using LOAD and FETCH Macros . 198

Pseudo-Register Support . 198
Overview . 198
Implementation Details . 199
Coding Example . 200

Support of Named Common Control Sections 200
How External References are Resolved . 200
Examples of Linkage Editor Applications . 202

Catalog a Phase into a Sublibrary . 202
Link-Edit and Execute Example . 204
Compile and Execute Example . 205

Chapter 6. Using VSE Facilities and Options 207
User-Written Exit Routines . 207

Program Exit Routines . 207
Writing an IPL Exit Routine . 209
Writing a Job Control Exit Routine . 210

Multiple Job Control Exit Routines . 216
Writing a Job Accounting Interface Routine . 221

Job Accounting Information . 221
Programming Considerations . 222
Tailoring the Program . 223

Checkpointing Facility . 223
Restarting a Program from a Checkpoint 224

Using Timer Services . 225
Time-of-Day Clock . 225
Interval Timer . 226

DASD Sharing with Multiple VSE Systems . 226
Reserving Devices for Exclusive Use . 227
Resource Locking . 227
Lock Communication File . 229
How to Initialize a Shared VSE Environment 229

vi IBM VSE/ESA Guide to System Functions

DASD Sharing under VM . 230
Special Considerations for Shared Libraries 230
Recorder, Hardcopy, and History Files in a DASD Sharing Environment . 231
An Example of a Two-System Installation 231
Error Recovery after System Breakdown 234

Designing Programs for Virtual Mode Execution 235
Programming Hints for Reducing Page Faults 235
Using Virtual Storage Macros . 237
Coding for the Shared Virtual Area . 240

Appendix A. Understanding Syntax Diagrams 243

Glossary . 247

Index . 255

 Contents vii

viii IBM VSE/ESA Guide to System Functions

 Figures

1. Virtual Storage and Processor (Real) Storage 1
2. Page Management Concept . 2
3. Running a Program in Virtual Storage . 3
4. Page Data Set Usage . 4
5. Single and Multiple Address Spaces . 5
6. VSE/ESA Storage Layout (Virtual Address Spaces/Real Address Space) . 6
7. Virtual Address Space Layout (Size > 16MB) 7
8. Partition Allocation Examples . 8
9. Partition Size and Program Area of a Dynamic Partition 9

10. Static Address Space, Partition Layout, and GETVIS Areas 12
11. Dynamic Address Space, Partition Layout, and GETVIS Areas 13
12. VSE/ESA Real Storage Layout . 14
13. Example of an IPL Procedure ($IPLESA) after Initial Installation Complete 19
14. CPU Statement and Parameters . 22
15. Job Stream Example for Creating a CDL 26
16. IPL Load Parameter Format . 27
17. Entering IPL Parameters for Modification 29
18. STOP Points of IPL Commands . 31
19. Loading Single SVA Phases . 34
20. Loading SVA Phases Through a Load List 34
21. Creating an SVA Load List . 35
22. Example of Symbolic I/O Assignments (Part 1) 40
23. Example of Symbolic I/O Assignments (Part 2) 41
24. File Label Processing . 43
25. Control Statements Defining a Job Consisting of Two Job Steps 46
26. Example of a Job Stream . 48
27. Possible Device Assignments . 52
28. Device Assignments Required for an Assembler Run 53
29. Sample Job for Label Checking of a File on Magnetic Tape 58
30. Summary of Label Option Functions . 62
31. Job Control Statements to Assemble, Link-Edit, and Execute a Program in

one Job Stream . 65
32. Sample of a Job to Assemble, Link-Edit and Execute a Program 66
33. Storage Layout of a Partition with Default GETVIS Area 71
34. Storage Layout of a Partition after a SIZE Command was Given 72
35. Program Execution with the SIZE Operand 72
36. Creation of SYSIN on Tape . 74
37. Standard Return Codes for Conditional Job Control 76
38. Processing Flow of Nested Procedures (4 Levels) 92
39. Tape Positioning at End of a Selective Restore for a Labeled Online

Tape . 119
40. Output Format of a Member (Phase) Display 133
41. Output Format of a Member (Procedure) Display 133
42. Output Format of a Member (Procedure) Display (Format=HEX) 134
43. Output Format of a Library Display (OUTPUT=STATUS) 135
44. Output Format of a Library Display (OUTPUT=NORMAL) 136
45. Output Format of a Sublibrary Display (OUTPUT=FULL) 137
46. Output Format of an SDL Display . 138
47. Output Format of an SDL Display for a single Phase (O=NORMAL) . . 139
48. Output Format of an SDL Display (O=SHORT) 140

 Copyright IBM Corp. 1984, 1999 ix

49. Output Format of Locked Members . 140
50. Example of a Stand-Alone Restore (Unlabeled Input Tape) 153
51. Output Format of Searched Members in Libraries (OUTPUT=NORMAL) 155
52. Output Format of Searched Members in CONNECT Libraries

(OUTPUT=FULL) . 155
53. Output Format of Search for a Single Phase (OUTPUT=FULL) 156
54. Output Format of Search for Locked Members (OUTPUT=FULL) 156
55. Code Example for a Librarian STATE Member Request 162
56. Code Example for Librarian OPEN/GET/CLOSE Requests 169
57. Record Types of an Object Module . 183
58. Job Stream to Catalog a Program Permanently into a Sublibrary 186
59. Job to Link-Edit and Store a Program Temporarily for Immediate

Execution . 187
60. Job to Assemble, Link-Edit, and Execute a Program Stored Temporarily 188
61. Naming Multiphase Programs . 191
62. Partition Size and Related Number of Phases and ESD Items 194
63. Overlay Tree Structure . 197
64. Link-Editing an Overlay Program . 198
65. Summary of Program Exit Conditions (STXIT Macro) 207
66. IPL Exit Routine Example . 210
67. Register Contents for JCL Exit Routines 212
68. Job Control Exit Routine Example . 214
69. Part of Content of JOBEXIT Sample . 217
70. Creating an SVA Load List for JCL Exit Routines 218
71. JOBEXIT Sample with Several JCL Exit Routines 218
72. Job Accounting Table . 222
73. Example of a RESTART Job . 225
74. Example of a DASD Sharing Configuration 232
75. Example of IPL Procedures for a DASD Sharing Environment 233
76. PFIX and PFREE Example . 239
77. Example of Conventions for SVA Coding 242

x IBM VSE/ESA Guide to System Functions

 Notices

References in this publication to IBM products, programs, or services do not imply
that IBM intends to make these available in all countries in which IBM operates.
Any reference to an IBM product, program, or service is not intended to state or
imply that only that IBM product, program, or service may be used. Any functionally
equivalent product, program, or service that does not infringe any of the intellectual
property rights of IBM may be used instead of the IBM product, program, or
service. The evaluation and verification of operation in conjunction with other
products, except those expressly designated by IBM, are the responsibility of the
user.

IBM may have patents or pending patent applications covering subject matter in
this document. The furnishing of this document does not give you any license to
these patents. You can send license inquiries, in writing, to the IBM Director of
Licensing, IBM Corporation, North Castle Drive, Armonk, NY 10504-1785, U.S.A.

Any pointers in this publication to non-IBM Web sites are provided for convenience
only and do not in any manner serve as an endorsement. IBM accepts no
responsibility for the content or use of non-IBM Web sites specifically mentioned in
this publication or accessed through an IBM Web site that is mentioned in this
publication.

Licensees of this program who wish to have information about it for the purpose of
enabling: (i) the exchange of information between independently created programs
and other programs (including this one) and (ii) the mutual use of the information
which has been exchanged, should contact:

IBM Deutschland Informationssysteme GmbH
Department ð215
Pascalstr. 1ðð
7ð569 Stuttgart
Germany

Such information may be available, subject to appropriate terms and conditions,
including in some cases payment of a fee.

Programming Interface Information
This manual also documents intended Programming Interfaces that allow the
customer to write programs to obtain the services of VSE/ESA. This information is
identified where it occurs, either by an introductory statement to a chapter or
section or by the following marking:

Programming Interface Information

End of Programming Interface Information

 Copyright IBM Corp. 1984, 1999 xi

Trademarks and Service Marks
The following terms are trademarks of International Business Machines Corporation
in the United States, or other countries, or both:

AFP
Advanced Function Printing
CICS
CICS/VSE
Enterprise Systems Architecture/39ð
ESA/39ð
ES/9ððð
IBM
System/39ð
VM/ESA
VSE/ESA
VTAM

xii IBM VSE/ESA Guide to System Functions

About This Book

This manual describes system functions provided by the IBM Virtual Storage
Extended/Enterprise Systems Architecture (VSE/ESA) Version 2 Release 4. It
provides information helping you to use and understand these functions.

Who Should Use This Book
The manual is intended for those users who have to understand and use VSE/ESA
system functions. Some information is of importance for both, system administrators
and programmers.

How to Use This Book
The chapters in this manual provide information about the following topics:

 Storage Management
 System Startup
 Job Control
 Librarian
 Linkage Editor

Facilities and Options

Where to Find More Information
For an overview on the functions new with VSE/ESA 2.4 refer to the VSE/ESA
Planning manual.

VSE/ESA Home Page

VSE/ESA has a home page on the World Wide Web, which offers up-to-date
information about VSE-related products and services, new VSE/ESA functions,
and other items of interest to VSE users.

You can find the VSE/ESA home page at:

http://www.ibm.com/s39ð/vse/

 Copyright IBM Corp. 1984, 1999 xiii

xiv IBM VSE/ESA Guide to System Functions

Summary of Changes

This edition of the manual includes the following enhancements and changes:

� Year 2000 information has been added, mainly for the Librarian and the
Linkage Editor.

� The supervisor, page data set, and SVA values of the IPL procedure have
been updated and the following statements have been added to the procedure:

 ADD FDF,FBAV
 SYS DASDFP=YES
 SYS SERVPART=FB

� Two new IPL commands are available: SET ZONEDEF and SET ZONEBDY.

� An updated Job Control Exit example has been added and is available as
skeleton JOBEXIT.

� The former "Chapter 7. Protecting Data" has been moved to the VSE/ESA
Administration manual.

 Copyright IBM Corp. 1984, 1999 xv

xvi IBM VSE/ESA Guide to System Functions

 Storage Management

 Chapter 1. Storage Management

Virtual Storage Concept
Programs are loaded and run in virtual storage (in a partition allocated in an
address space). In Figure 1, a virtual address space with the possible maximum of
2GB is contrasted with a processor (real) storage size of 16MB. VSE/ESA requires
at least 16MB of processor storage.

Figure 1. Virtual Storage and Processor (Real) Storage

Of course, each instruction of a program must be in processor storage when the
instruction is executed, and so must the data which this instruction manipulates.
The other instructions and data of that program in virtual storage need not be in
processor storage at that same moment; they can reside on auxiliary storage until
needed. The file used for this purpose is called the page data set .

It would be inefficient, however, to bring every instruction and its associated data
into processor storage individually. Therefore, virtual storage is organized and
manipulated in sections of 4KB, called pages . Processor storage is also divided
into 4KB sections, called page frames . Page frames accommodate pages of a
program during execution.

Note: VSE/ESA can be defined to run without a page data set (NOPDS). This is
possible if the available processor storage or the virtual machine size (if
running under VM) is at least 16MB. The VSE/ESA Planning manual has
further details under “Storage Support and Layout”.

The following discussion assumes a system with a page data set.

When a program is loaded from a library into virtual storage, and there are not
enough page frames available to contain all the pages of a program, the system
writes the contents of some page frames to the page data set. See Figure 2 on
page 2 for an overview of this page management concept. A program named
PROGX (A) is "conceptually" loaded into virtual storage (B). The supervisor finds
page frames in the page pool of processor storage (C). If there are not enough
page frames available to accommodate all of PROGX, the supervisor stores the
contents of some page frames on the page data set (D).

 Copyright IBM Corp. 1984, 1999 1

 Storage Management

Sub -
Lib rary

PROGX

Vir tual Sto rag e

Pro c esso r Sto rag e

P R O G X

X

X

X

X

X
X

X

X

X

X

X

X

X
X

Pag e
Data
Set

Pag e
Po o l

X

X
X

A

B

C

D

Figure 2. Page Management Concept

 Page Management
The concept of page management as shown in Figure 2 is discussed below.

When a program is loaded for execution it may be loaded in noncontiguous page
frames of processor storage. The supervisor knows what processor storage
locations pages of a given program occupy. If the program should cancel, due to an
error, the storage dump produced by the system reflects the virtual addresses
where the program was conceptually running. In Figure 3 on page 3, a 16KB
program named INVEN, is conceptually loaded at the virtual storage location
1024KB. As shown, the system selected four page frames of processor storage
which are not contiguous . If the program were to end abnormally and a storage
dump were to be produced, the INVEN program would be shown as occupying
addresses 1024KB through 1040KB minus 1.

Note: The values used in this figure are for demonstration only - they do not
reflect real system values.

2 IBM VSE/ESA Guide to System Functions

 Storage Management

Vir tual Sto rage

Pro c esso r Sto rag e

II
I

I

I = a p ag e o f p rog ram INVEN.
4 p ag e frames are
occup ied b y the p rog ram.0

INVEN (16KB)

Pag e Po o l o f 256KB

1024KB

1040KB-1

Figure 3. Running a Program in Virtual Storage

All of the information pertaining to the virtual storage and page frames is
maintained within the system in a series of tables. These tables describe the virtual
storage. Entries in these tables reflect the current status of a given page of virtual
storage.

Relating Virtual Storage to Locations in Processor Storage
Since the system does not anticipate where in processor storage a page is loaded,
it translates the virtual addresses into real addresses when required for execution.

If an entire program fits into processor storage, none of the program's pages are
placed on the page data set.

In the example shown in Figure 3, no page of INVEN is paged out as long as the
demand on processor storage does not exceed the number of available page
frames.

If a second program were to be executed (multiprogramming) and this program
together with INVEN would be larger in size than the number of available frames in
the page pool, the system would store as many (currently unused) pages as
necessary on the page data set to keep both programs running.

In Figure 4, a program called PAYROLL is being executed as well as INVEN.
PAYROLL is a 116KB program and conceptually loaded at virtual storage location
1060KB. As the page pool in this example is only 128KB, the total demand (INVEN
+ PAYROLL) of 132KB exceeds the processor storage resource by 4KB or one
page frame.

The program PAYROLL will not start executing until all of its pages have been
loaded into processor storage. After having loaded 112KB of program PAYROLL,
the supervisor must make one page frame available for that program. It does this
by selecting the least recently used page of program INVEN and storing it on the

 Chapter 1. Storage Management 3

 Storage Management

page data set. Once this page has been saved on the page data set, the related
page frame is available for the last page of program PAYROLL.

Note: The values used in this figure are for demonstration only - they do not
reflect real system values.

Vir tual Sto rage

P

P

P

P

P

P

I

I

II

P

P

PP

P

P P P

P

P P

P

P

P

P

P

P

P

P

P

P

1 p ag e o f PAYROLL no t yet load ed

= a p ag e o f p rog ram INVEN
= a p ag e o f p rog ram PAYROLL

I
P

P

PAYROLL (116K)

INVEN (16K)

P

Pro c esso r Sto rag e

0

1060KB

1024KB

Pag e Poo l o f 128KB

1040KB-1

1176KB-1

During execution, whenever a required instruction or some data is not
present in processor storage, execution is interrupted by a page fault. The
required page must then be read into processor storage from the page data
set.

Figure 4. Page Data Set Usage

4 IBM VSE/ESA Guide to System Functions

 Storage Management

Address Space Layout
While a virtual address space can have a maximum size of up to 2GB the virtual
storage concept makes it possible that processor (real) storage is much smaller.
The minimum required is 16MB.

Figure 5. Single and Multiple Address Spaces

A virtual address space is divided into the:

� Private area for one or more private partitions.

� Shared areas 24-bit and shared areas 31-bit.

This concept is discussed in detail on the following pages.

Under “Predefined System Environments”, the VSE/ESA Planning manual
describes in addition the storage and address space layout of the predefined
environments that can be selected for initial installation.

 Chapter 1. Storage Management 5

 Storage Management

Virtual Address Spaces versus Real Address Space
As shown in Figure 6, VSE/ESA distinguishes virtual address spaces (identified in
the Figure by 0 through X1) where X1 reflects a dynamic partition and a real
address space (identified in the Figure by R).

Figure 6. VSE/ESA Storage Layout (Virtual Address Spaces/Real Address Space)

In Figure 6, the assumed real storage is 16MB.

Fx partitions reside in virtual address spaces. FxR are real partitions allocated with
ALLOC R (where RSIZE defines the available storage for all ALLOC R definitions).
Section “Defining Real Storage” on page 13 provides further details.

PASIZE is the maximum size available for private partition allocations within a
virtual address space.

6 IBM VSE/ESA Guide to System Functions

 Storage Management

Layout of a Virtual Address Space
The address space layout shown below (size >16MB) applies also if the address
space size is 16MB which is the required minimum.

Figure 7. Virtual Address Space Layout (Size > 16MB)

The possible maximum size of this address space is 2GB. For a running system,
the actual size of an address space is to be calculated as follows:

PASIZE + size of shared areas 24-bit and 31-bit

The SVA (24-Bit) includes the following:

� The VPOOL area is needed to exchange data with the VIO (virtual I/O area).

� The SLA is the area used by VSE/ESA to store and maintain system and user
label information.

� The system GETVIS area is an area of virtual storage reserved for use by the
system.

� The VLA is the area in which phases resident in the SVA are stored.

� The SDL is the directory of the phases to be loaded into the SVA during
system startup.

The SVA (31-Bit) includes the following:

 Chapter 1. Storage Management 7

 Storage Management

� The system GETVIS area is an area of virtual storage reserved for use by the
system.

� The VLA is the area in which phases resident in the SVA are stored.

Notes:

1. The shared areas (31-Bit) may start below 16MB, dependent on the PASIZE
specification and the shared areas (24-Bit), and may cross the 16MB line.

2. SDL, SLA, VPOOL, and shared partitions are only available in the shared areas
(24-Bit).

3. The private area must start at least 1MB below 16MB.

Partition Allocation and Program Size Considerations
Figure 8 shows possible partition allocations for static partitions and a dynamic
partition.

Figure 8. Partition Allocation Examples

Notes to Figure 8:

1. The space marked as "invalid" cannot be used due to the values used for
allocation (set through the ALLOC command).

8 IBM VSE/ESA Guide to System Functions

 Storage Management

2. EOS means "end of virtual storage" and is the sum of PASIZE plus the size of
the shared areas. The resulting value must be <=2GB (2048MB).

Each partition requires a minimum program area of 80KB and a minimum
partition GETVIS area of 48KB below 16MB.

The size of a partition is defined by the allocation value. The maximum allocation
value is determined by PASIZE (a parameter of the IPL SYS command). For a
static partition the allocation value is defined in the ALLOC command (included in
the ALLOC procedure). For a dynamic partition the allocation value is set in the
dynamic class table (DTR$DYNC) and includes the size of the dynamic space
GETVIS area.

Figure 9 shows the layout for a dynamic partition. The layout for a static partition is
identical except that it does not have a dynamic space GETVIS area.

Figure 9. Partition Size and Program Area of a Dynamic Partition

A partition is divided into a program area and a partition GETVIS area. By use of
the EXEC statement a program is loaded into the program area. The size of a
program that can be loaded is restricted by the size of the program area. The size
of the program area is either determined via the SIZE parameter in the EXEC
statement, or through the SIZE value in the dynamic class table (for a dynamic

 Chapter 1. Storage Management 9

 Storage Management

partition) or through the SIZE command (for a static partition). The size of the
remaining partition GETVIS area can then be calculated as follows:

Dynamic Partition :

Partition GETVIS Area = ALLOC - SIZE - Dynamic Space GETVIS Area

Static Partition :

Partition GETVIS Area = ALLOC - SIZE

The program area is always located completely below 16MB. Its maximum size
can be calculated as follows:

1. If a partition is <= 16MB:

Dynamic Partition :

Maximum Program Area = ALLOC - 48KB - Dynamic Space GETVIS Area

Static Partition :

Maximum Program Area = ALLOC - 48KB

2. If a partition is > 16MB:

Dynamic Partition :

Maximum Program Area = 16MB - (48KB + Shared Area 24-Bit + Dynamic Space
 GETVIS Area)

Static Partition :

Maximum Program Area = 16MB - (48KB + Shared Area 24-Bit)

Once a program has been loaded into the program area, it can load additional
phases with the CDLOAD macro into the partition GETVIS area above 16MB
(identified in Figure 9 for better understanding as "CDLOAD Area").

Using the Virtual Storage Map
Before you reallocate virtual storage of an existing partition or initialize a new
partition by allocating storage to it, you may first obtain a virtual storage map for
getting the current storage and partition values of your system. You can obtain
such a map using the:

� Display Storage Layout dialog

For a detailed description of this dialog refer to the manual VSE/ESA
Administration under “Using the Display Layout Dialog”.

 � MAP command

For a detailed description of this command refer to the VSE/ESA System
Control Statements under “MAP”.

 GETVIS Areas
Certain functions need to acquire virtual storage dynamically during program
execution. The GETVIS areas are used for this purpose. A program requests
GETVIS space via the GETVIS macro. For a detailed description of this macro,
refer to the VSE/ESA System Macro Reference under “GETVIS Macro”.

VSE/ESA maintains two GETVIS areas for a static address space and three for a
dynamic address space:

10 IBM VSE/ESA Guide to System Functions

 Storage Management

� Partition GETVIS area

Each partition has its own partition GETVIS area which may cross the 16MB
line depending on the allocation value. The minimum is 48KB and must be
below 16MB as shown in Figure 8 on page 8, for example.

� System GETVIS area

As the name implies, this area is reserved for system use. It is permanently
assigned and belongs to the shared areas of virtual storage.

VSE/ESA supports a 24-bit and a 31-bit system GETVIS area located in the
corresponding shared areas. The 31-bit area may reside partly or completely
below 16MB.

� Dynamic space GETVIS area

For dynamic partitions, VSE/ESA supports a 24-bit dynamic space GETVIS
area. It can be considered as an extension of the system GETVIS area and is
defined via the dynamic class table. The area exists from dynamic partition
initialization until partition deactivation. The size of the dynamic space GETVIS
area (the minimum is 128KB) also influences the maximum partition size of a
dynamic partition. The maximum size of a dynamic partition is:

PASIZE - Dynamic Space GETVIS Area

The following figures (Figure 10 on page 12 and Figure 11 on page 13) show in
detail the layout of the GETVIS areas within an address space.

 Chapter 1. Storage Management 11

 Storage Management

Layout of a Static Address Space and its GETVIS Areas
Figure 10 shows the layout of an address space with a static partition below 16MB
and the System GETVIS Area (31-Bit) located partly below 16MB.

Figure 10. Static Address Space, Partition Layout, and GETVIS Areas

For a description of the GETVIS macro and its parameters, refer to the manual
VSE/ESA System Macro Reference under “GETVIS Macro”.

12 IBM VSE/ESA Guide to System Functions

 Storage Management

Layout of a Dynamic Address Space and its GETVIS Areas
Figure 11 shows the layout of an address space with a dynamic partition where
the System GETVIS Area (31-Bit) is located above 16MB.

Figure 11. Dynamic Address Space, Partition Layout, and GETVIS Areas

For a description of the GETVIS macro and its parameters, refer to the manual
VSE/ESA System Macro Reference under “GETVIS Macro”.

Defining Real Storage
For a program that is to be executed in real mode (EXEC ...,REAL), a real partition
has to be specified with the ALLOC R command. Real partitions can only be
specified for static partitions and are always located below 16MB. Real partitions
can also be used for fixing pages with the PFIX macro.

The total size which is needed for all ALLOC R has to be specified during IPL with
the RSIZE operand of the IPL SYS command.

If only the fixing of pages (PFIX macro) is needed, no ALLOC R is necessary.
Instead, the PFIX limits should be specified with the JCL command SETPFIX which
can be used for both, static and dynamic partitions . PFIX limits can be specified
for a BELOW and an ANY area. The BELOW area is located completely below
16MB, whereas the ANY area may cross the 16MB line.

 Chapter 1. Storage Management 13

 Storage Management

The distinction between PFIX and ALLOC R areas results in a layout of real
storage as shown in Figure 12 on page 14.

Notes:

1. If a BELOW area for PFIX is reserved for a partition, no ALLOC R can be given
for that partition and vice versa.

2. The number of page frames currently not fixed in the PFIX BELOW and ANY
area are made available for system use.

For details about the PFIX macro refer to the manual VSE/ESA System Macro
Reference under “PFIX Macro”, for details about the JCL SETPFIX statement to the
manual VSE/ESA System Control Statements under “SETPFIX”.

Real Storage Layout
Real storage means the processor storage physically available.

Figure 12. VSE/ESA Real Storage Layout

14 IBM VSE/ESA Guide to System Functions

 Storage Management

The area numbers have the following meaning:

(1) - Reserved for system use (EOR = end of real storage)
(2) - Available for EXEC REAL and PFIX (24-Bit) - reserved by RSIZE
(3) - Available for PFIX (24-Bit) - reserved by SETPFIX statement
(4) - Available for PFIX (31-Bit) - reserved by SETPFIX statement

The number of page frames currently not reserved in area (3) are made available
for system PFIX (24-Bit). The number of page frames currently not reserved in area
(4) are made available for system PFIX (31-Bit).

Executing Programs in Virtual and Real Mode
All programs when executing are conceptually running in the address space
associated with a partition. The system selects page frames from the page pool for
the pages of the executing programs. Execution can be in one of two modes:

Execution in Virtual Mode
The page frames occupied by pages of programs running in virtual mode continue
to be part of the page pool. The system manages the processor storage, placing
some pages on the page data set, when necessary, and retrieving pages as
required. Programs running in virtual mode are pageable.

Execution in Real Mode
Note: Real mode execution is possible in a static but not in a dynamic partition.

The page frames occupied (previously reserved via ALLOC R) by pages of
programs running in real mode are taken out of the page pool for the duration of
that program's execution; these page frames will not be selected for another
program. The program is fixed in processor storage and is non-pageable.

To have a program executed in real mode, an amount of processor storage must
be allocated to the partition in which that program is to run. However, this
processor storage remains part of the page pool until real-mode execution begins; it
becomes part of the page pool again when real-mode execution ends. Certain
programs, such as those with critical time dependencies, may have to run in real
mode.

A partition may execute in only one mode at a given point in time; for example, the
BG partition cannot initiate both real and virtual execution at the same time.

Processor Storage Allocation for Real Mode Execution
Refer also to “Defining Real Storage” on page 13 for an introduction to the RSIZE
operand of the IPL SYS command and the JCL command ALLOC R.

A specific number of page frames of processor storage may be allocated to any
static partition for real mode execution. The allocation may be done at any time
with the ALLOC R command.

Submitting

 ALLOC R,F7=4ðK,F8=24K

for example, causes the following:

 Chapter 1. Storage Management 15

 Storage Management

40KB and 24KB of real address space are allocated to partitions F7 and F8,
respectively. When real mode execution takes place, the processor storage
addresses used by the system are the same as the addresses within the
allocated real address space.

With the above ALLOC R command the largest program that can be executed real
in the two partitions are 40KB in F7 and 24KB in F8.

Note: Allocated pages are PFIXed if an EXEC program,REAL is issued for a
partition. Whenever a page in the allocated area has been fixed by another
partition, this page cannot be PFIXed for real execution until the other
partition frees this page. You should be aware that an outstanding reply or a
pause can keep a page fixed in the allocated real area.

Fixing Pages in Processor Storage
Note that the fixing of pages is only possible if a JCL SETPFIX or an ALLOC R
command was given before. Refer also to “Defining Real Storage” on page 13 for
additional details.

Allocated page frames are used not only for programs running in real mode, they
may also be used for programs running in virtual mode. For example, for
instructions or data that must be in processor storage and, therefore, cannot
tolerate paging. The pages containing such code or data can be fixed via the PFIX
(page fix) macro, and freed immediately after use via the PFREE (page free)
macro.

When pages of a program running in a given partition are fixed in response to the
PFIX macro, they are fixed in the page frames allocated to the partition. If a PFIX
macro is issued and not enough storage has been allocated, the pages are not
fixed, and a completion code indicating this is returned to the program.

Fixing pages in processor storage means that fewer page frames are available to
other programs running in virtual mode thus potentially degrading total system
performance. If you have programs with large I/O areas (fixed by the system for I/O
operations), it reduces the initial size of the page pool and may degrade
performance. Consider this effect carefully before allowing in addition the use of the
PFIX macro at your installation.

For details about the PFIX and PFREE macros, refer to the manuals VSE/ESA
System Macro User's Guide under “Fixing and Freeing a Page in Processor
Storage”, and VSE/ESA System Macro Reference under “PFIX Macro” and under
“PFREE Macro”.

16 IBM VSE/ESA Guide to System Functions

 Starting the System

Chapter 2. Starting the System

The process of system startup consists of IPL (Initial Program Load) and the
subsequent initialization of static partitions. It includes steps such as loading the
supervisor into storage, defining the virtual storage layout, and setting partition
parameters and values.

To allow an almost completely automated system startup with a minimum of
operator intervention, VSE/ESA provides the Automated System Initialization (ASI)
support. ASI has all the information required for system startup stored as cataloged
procedures in the system sublibrary IJSYSRS.SYSLIB.

Note: Startup should always be performed via ASI procedures. It is not
recommended to perform IPL interactively, entering each command
manually at the system console (SYSLOG) since this is a cumbersome and
time-consuming method to start your system. When using ASI you can
interrupt IPL processing and modify IPL parameters as described under
“Interrupt IPL Processing for Modifications” on page 26.

In the following discussion, the term "system startup" always implies that startup is
performed through ASI procedures.

Predefined Startup Support

VSE/ESA includes, as shipped, for each predefined environment all necessary
ASI IPL and JCL startup procedures. This includes procedures for partition
allocations, library search definitions, label definitions, and others.

The startup sequence, the procedures involved, and how to modify them is
described in detail in the VSE/ESA Administration manual under “Tailoring IPL
and System Startup”.

This chapter provides background information about system startup and its
related ASI procedures and provides specific details about:

� ASI master procedure ($ASIPROC)

� Interrupting IPL processing for modifications

� Loading phases into the shared virtual area (SVA)

A further topic related to system startup and discussed in this manual is
documented under “Writing an IPL Exit Routine” on page 209.

 ASI Procedures
System startup always begins with the ASI IPL procedure and continues by
processing the ASI JCL Procedures. ASI requires one procedure for IPL (ASI IPL
procedure), and one job control procedure per partition (ASI JCL procedures).

 Copyright IBM Corp. 1984, 1999 17

 Starting the System

Contents of an ASI IPL Procedure
IPL commands set or change various characteristics of your system. In addition to
the supervisor parameters command (always the first command of an IPL
procedure), the following IPL commands are available:

I/O configuration ADD and DEL commands

Lock (communication) file DLF command

System date and time SET command

Activate XPCC/APPC/VM support SET XPCC command

Daylight saving support SET ZONEDEF command

Daylight saving support SET ZONEBDY command

System disk file assignments DEF command

Page data set definitions DPD command

Label information area DLA command

Supervisor parameters SYS command

Shared virtual area definitions SVA command

ADD and DEL commands precede all other commands. The DLF command (if any)
must immediately follow all ADD/DEL commands. The SVA command is the last
command to be submitted.

VSE/ESA provides a set of predefined IPL procedures for initial installation.
VSE/ESA selects and modifies one of these procedures during initial installation
according to the actual installation environment and renames it to $IPLESA.
Figure 13 on page 19 shows as an example a $IPLESA procedure and how it
might look like after initial installation has been completed. The example shown is
for predefined environment B and DOSRES resides on an IBM 3380 disk device.

VSE/ESA provides the Tailor IPL Procedure dialog to modify a current IPL
procedure ($IPLESA) at any time if required. The dialog is described in detail in the
manual VSE/ESA Administration under “Tailoring the IPL Procedure”.

18 IBM VSE/ESA Guide to System Functions

 Starting the System

ðð9,$$A$SUPX,VSIZE=25ðM,VIO=512K,VPOOL=64K,LOG
ADD ðð9,3277 SYSTEM CONSOLE
ADD ððC,254ðR
ADD ððD,254ðP
ADD ððE,4248
ADD ð6ð:ð67,3277
ADD ð7ð:ð77,3277
ADD 2ðð:2ð1,ECKD
ADD 48ð,349ð
ADD 481:483,349ð,ðð
ADD C14,CTCA,EML
ADD EEE,338ð
ADD F36:F37,FBA
ADD F8ð:F81,338ð
ADD FDF,FBAV VIRTUAL DISK FOR LABEL AREA, DO NOT DELETE
ADD FEC,35ð5 POWER DUMMY READER, DO NOT DELETE
ADD FED,252ðB2 POWER DUMMY PUNCH, DO NOT DELETE
ADD FEE,PRT1 POWER DUMMY PRINTER, DO NOT DELETE
ADD FEF,PRT1 POWER DUMMY PRINTER, DO NOT DELETE
ADD FFA,35ð5 ICCF INTERNAL READER, DO NOT DELETE
ADD FFC,35ð5 ICCF DUMMY READER, DO NOT DELETE
ADD FFD,252ðB2 ICCF DUMMY PUNCH, DO NOT DELETE
ADD FFE,PRT1 ICCF DUMMY PRINTER, DO NOT DELETE
ADD FFF,CONS DUMMY CONSOLE, DO NOT DELETE
SET ZONE=WEST/ðð/ðð
DEF SYSCAT=DOSRES
DEF SYSREC=SYSWK1
SYS JA=YES
SYS BUFSIZE=15ðð
SYS NPARTS=44
SYS DASDFP=YES
SYS SEC=NO
SYS PASIZE=5ðM
SYS SPSIZE=ðK
SYS BUFLD=YES
SYS SERVPART=FB
DPD VOLID=DOSRES,CYL=414,NCYL=44,TYPE=N,DSF=N
DPD VOLID=DOSRES,CYL=458,TYPE=N,DSF=N
DLA NAME=AREA1,VOLID=DOSRES,CYL=64,NCYL=3,DSF=N
SVA SDL=7ðð,GETVIS=(768K,6M),PSIZE=(32ðK,6M)
/+
/\

Figure 13. Example of an IPL Procedure ($IPLESA) after Initial Installation Complete

Contents of ASI JCL Procedures

ASI Background Procedure
 This procedure must contain all job control statements and commands necessary
to initialize the BG partition and the system as a whole:

� ALLOC commands to allocate virtual and real storage to the foreground
partitions you intend to start.

 Chapter 2. Starting the System 19

 Starting the System

� All permanent library definitions or assignments of logical units needed in the
BG partition.

� The // SETPFIX statement (or SETPFIX command) for setting PFIX limits.

� The SIZE command for defining the maximum program size.

� // STDOPT statement for the definition of standard (permanent) options.

� // OPTION STDLABEL, together with label information, to set up the system
standard label subarea if it was not set up during a previous system
initialization.

� // OPTION PARSTD, together with label information, to set up (background or
foreground) partition standard label subareas if they were not set up during a
previous system initialization.

� // OPTION CLASSTD, together with label information to set up class standard
label subareas for dynamic partitions if they were not set up during a previous
system initialization.

� // JOB jobname for the initialization of the system recorder file and the
hardcopy file.

� The START Fn command for each foreground partition to be started from this
BG partition.

� The STOP command if the BG partition is to be spooled by VSE/POWER. The
STOP command should immediately follow the START command for the
VSE/POWER partition.

ASI Foreground Procedures
 Such a procedure must include job control statements and commands necessary
to initialize a particular foreground partition:

� // OPTION PARSTD, followed by label information, to set up the foreground
partition standard label subarea if it was not set up during a previous system
initialization or from the background partition.

� All permanent library definitions or assignments of logical units needed in the
particular foreground partition.

Note: For how to initialize dynamic partitions, refer to the manuals VSE/ESA
Planning and VSE/ESA Administration.

Naming Conventions for ASI Procedures
VSE/ESA assigns certain default names during initial installation. The defaults are:

 IPL: $IPLESA

 JCL: $ðJCL
 $1JCL
 $2JCL
 .
 .
 .

When you catalog your own ASI JCL procedures, you must observe the same
naming rule as when you catalog a partition-related procedure. The first character
must be a $. The second character identifies the partition: 0 for the BG-partition, 1

20 IBM VSE/ESA Guide to System Functions

 Starting the System

for the F1-partition etc. The remaining characters must be identical for all
procedures belonging to one set.

You might want to use names different from the default names. For example, the
initialization of your system during the day deviates from that of the night shift. The
day shift runs a full VSE/ESA system (including VSE/POWER, VTAM, CICS)
whereas the night shift runs only simple batch jobs. In this case, you might prefer to
use procedure names as follows: $IPLD, $0JCLD, $1JCLD, $2JCLD, ... for the day
shift, and $IPLN, $0JCLN, $1JCLN, $2JCLN ... for the night shift. This applies only
to static partitions; for dynamic partitions the procedure name is to be specified in
the dynamic class table (as profile name).

Starting Up the System
For a formal step-by-step description of how to perform IPL, which is very much
determined by your processor and hardware configuration, consult the manual
VSE/ESA Operation.

After the operator has initiated system startup (through performing IPL), the system
searches for the IPL and JCL procedure names in the following sequence:

1. Retrieves the names from $ASIPROC, if a $ASIPROC master procedure exists.
For a detailed description of creating a master procedure refer to “The ASI
Master Procedure ($ASIPROC).”

2. Uses the default names: $IPLESA and $$JCL (where the second $ is the
partition placeholder).

In addition, VSE/ESA allows you to interrupt startup processing as described under
“Interrupt IPL Processing for Modifications” on page 26 and enter IPL and JCL
procedure names if required.

The ASI Master Procedure ($ASIPROC)
Note: As shipped, VSE/ESA includes only a $ASIPROC master procedure for

initial installation (TYPE=INSTALL). The following information helps
you implement your own $ASIPROC at your installation.

A typical example of using an ASI master procedure is an environment with multiple
VSE/ESA systems sharing the DOSRES (system residence) disk device or an
environment where two or more VSE/ESA systems run as guest systems under
VM. An ASI master procedure is also useful

� if you have only one procedure set, but want to use other than default IPL and
JCL procedure names, or

� if you plan to use the STOP facility as described in detail under “STOP
Processing” on page 30; for example, when you are still "debugging" your ASI
procedures.

The STOP facility allows you to specify, via the STOP parameter (see below), up to
four different IPL commands. Upon encountering the first of a particular command
type, the automatic IPL process stops, and gives the operator a chance to enter or
update IPL commands at the console.

 Chapter 2. Starting the System 21

 Starting the System

To build the master procedure, provide one (CPU) statement for each system. The
statement allows you to specify the following parameters where the parameters
CPU and IPL are mandatory. The syntax looks as follows:

┌ ┐──,JCL=$$JCL ──── ┌ ┐──,TYPE=NORMAL
55─ ──CPU=cpu_id ,IPL=proc_name ──┼ ┼──────────────── ──┼ ┼────────────── ───5

└ ┘──,JCL=proc_name └ ┘──,TYPE=SENSE ─

5─ ──┬ ┬─── ─────────────────5%
└ ┘──,STOP= ──┬ ┬─cmd1──────────────────────────────

└ ┘──(cmd1,cmd2 ──┬ ┬──────────────────)
└ ┘──,cmd3 ──┬ ┬───────

└ ┘──,cmd4

Figure 14. CPU Statement and Parameters

CPU=cpu_id Specifies 12 hexadecimal digits to identify the CPU on which
an ASI procedure is to be run. The cpu_id should be taken
from message 0I04I which is issued automatically during IPL.
If VSE/ESA runs as a guest system under VM, the first two
digits of the cpu_id are ignored.

IPL=proc_name Specifies the name of the ASI IPL procedure.

JCL=proc_name Specifies the name of the ASI JCL procedure set; the name
must start with $$.

Default: $$JCL

TYPE=type For “type” you can specify one of the following:

NORMAL This is the default and causes each ADD
command of the IPL procedure to be checked for
the correct device type.

SENSE Causes IPL to sense devices and generate
corresponding device information which is stored
in PUB (physical unit block) entries. This is done
for all devices defined in the IOCDS
(Input/Output Configuration Data Set). Working in
this way, the sense function ensures that you do
not have to ADD any device unless:

� A device is not operational.

� A device does not support device sensing.

� A device requires special options to be
defined (SHR, for example).

� Dummy devices are to be added.

Note: Parameter INSTALL is reserved for the
system and used for initial installation of
VSE/ESA only. It is identical to SENSE
but in addition some installation-related
processing is performed.

STOP=command(s) A list of up to four different IPL commands, in arbitrary
sequence. If more than one is specified, the commands must
be enclosed within parentheses and separated by commas.

22 IBM VSE/ESA Guide to System Functions

 Starting the System

The first of a specified command type that is encountered
during IPL causes an interruption before the command is
processed. This enables the operator to modify IPL
parameters and commands. Refer also to “Modifying IPL
Parameters” on page 29.

Cataloging an ASI Master Procedure
Following is a job stream example of how to catalog the master procedure:

// JOB CATALOG $ASIPROC
// EXEC LIBR

 ACCESS SUBLIB=IJSYSRS.SYSLIB
 CATALOG $ASIPROC.PROC
 CPU=FFxxxxxx9221,IPL=$IPLX,TYPE=SENSE
 CPU=FFxxxxxx9221,IPL=$IPLY,JCL=$$JCLY,STOP=(DEF,DLA,DLF,DPD)
 /+
 /\
 /&

The FF in the CPU statements indicates that VSE/ESA is running under VM. For a
VSE/ESA that runs natively, these two characters would show the model number of
a processor. If the CPU identification of a virtual machine is equal (except for the
first two characters) to another CPU identification in the master procedure, the entry
for the virtual machine must come first. The CPU identification should be taken
from message 0I04I which is issued automatically during IPL. If running under VM,
replace xxxxxx with the CPU identification defined in the VM directory of your
VSE/ESA guest system or specified with the VM CP command SET CPUID.

For procedure $IPLX, the system will use device sensing to add devices. As no
TYPE operand is specified with $IPLY, the system will merely check the validity of
the ADD commands in this procedure.

 If you want devices added by device sensing in most of the IPL procedures
addressed by the ASI master procedure, enter TYPE=SENSE as a command
rather than an operand. It must be the first command in the master procedure. The
IPL procedures which are not to use automatic adding must then be specified with
the operand TYPE=NORMAL. You would get the same effect as in the example
above by cataloging the following ASI master procedure:

 .
 .
 TYPE=SENSE
 CPU=FFxxxxxx9221,IPL=$IPLX
 CPU=FFxxxxxx9221,IPL=$IPLY,JCL=$$JCLY,STOP=(DEF,DLA,DLF,DPD),TYPE=NORMAL
 .
 .

Note that the TYPE operand controls device sensing for one IPL procedure , the
TYPE command sets the default value for all IPL procedures listed in the master
procedure. In the example, TYPE=NORMAL overrides TYPE=SENSE for the
second CPU statement.

 Chapter 2. Starting the System 23

 Starting the System

Establishing the Communication Device for IPL
VSE/ESA supports the following types of system consoles for communication
during IPL:

 � Integrated Console

This is the integrated console of an IBM S/390 service processor used to
control and maintain the processor's configuration.

 � CRT Console

This is the system console support based on a local non-SNA 3270 terminal.

� Line Mode Console

This is the system console support based on a virtual 3215 printer keyboard if
VSE/ESA runs as a guest under VM.

Console Selection for Initial Installation
For initial installation either the Integrated Console may be used as system console
(by specifying the appropriate load parameter) or a local terminal which is
established as system console via interrupt. The IPL procedure shipped with
VSE/ESA for initial installation contains an ADD command for a dummy system
console:

 ADD FFF,CONS

If the Integrated Console is selected as system console for initial installation, it has
the device number FFF.

During the installation process, VSE/ESA does device sensing and updates the IPL
procedure with ADD statements for the devices attached. This is also true for the
system console. Figure 13 on page 19 shows two ADD statements for the system
console. The ADD FFF,CONS statement defines the Integrated Console which can
be used as system console.

 ADD ðð9,3277

was added later after the device was recognized through device sensing. In this
example for initial installation, the device was established as system console via
interrupt and the console address 009 added to the first (supervisor command)
statement defining it as the console for subsequent IPLs.

Console Selection when Performing a Normal IPL
During IPL, VSE/ESA selects the system console (SYSLOG) according to the
following criteria:

1. IPL load parameter.
 2. Device availability.

3. Console device specification in the ASI IPL procedure.
4. I/O interrupt received from a console device.

The basic selection rules are:

1. If a console type is specified in the IPL load parameter, then the system will
route the messages to that device. This can be the Integrated Console or a
local console (which is the default). Local console means CRT or Line Mode
console.

24 IBM VSE/ESA Guide to System Functions

 Starting the System

a. If a local console is requested or the Integrated Console is not available,
the system will route messages to the local console specified in the ASI IPL
procedure.

b. If that device is not available or not operational, the system will wait for an
interrupt from a local console.

2. If a system is IPLed without specification of a console type in the IPL load
parameter, the system will route messages to a local console (CRT or Line
Mode console).

a. The system selects first the console specified in the ASI IPL procedure.

b. If this device is not operational, the system waits for an interrupt from a
local console.

Details about the IPL load parameter are provided under “The IPL Load Parameter”
on page 27.

IPL Communication Device List
Any interrupt will (on a first-come basis) establish the issuing device as the IPL
communication device (system console). It is advisable that terminal-oriented
installations with locally attached terminals (such as the IBM 3277), install the
IPL-phase $$A$CDL0 which defines communication device addresses valid for IPL.
Note that you cannot perform IPL from a device which is not included in
$$A$CDL0 once $$A$CDL0 has been installed , unless the system console is the
Integrated Console.

$$A$CDL0 is not needed if the Integrated Console is chosen as system console.

To build a restrictive pool of IPL communication devices, you assemble an IPL
communication device list (CDL) and catalog the list under the phasename
$$A$CDL0 in the system sublibrary IJSYSRS.SYSLIB. During IPL, this phase (if
present) is loaded into storage. When the system enters the wait state and an
interrupt occurs, the CDL is searched for the address of the device issuing the
interrupt. If the address is listed, the interrupting device is accepted as an IPL
communication device and processing continues. If the address is not found, the
system remains in the wait state. Installation of the CDL is optional.

For IPL to be successful once $$A$CDL0 is installed, the SYSLOG (system
console) device address must be present in the CDL. If you intend to submit IPL
commands from card reader or diskette, you must enter their addresses in the CDL
as well. To ensure backup in case of hardware errors during IPL, consider stand-by
devices, such as another card reader, diskette, or even an additional SYSLOG
device in the CDL.

The CDL may have up to eight entries, each of which is four bytes long:

Bytes Explanation

0 - 1 Reserved

2 - 3 cuu (device number)

You create the CDL by submitting a job that catalogs $$A$CDL0 into the system
sublibrary IJSYSRS.SYSLIB as shown in Figure 15 on page 26.

 Chapter 2. Starting the System 25

 Starting the System

// JOB CATALOG CDL
// LIBDEF PHASE,CATALOG=IJSYSRS.SYSLIB
// OPTION CATAL,NODECK

 PHASE $$A$CDLð,\
// EXEC ASMA9ð....

 $$A$CDLð CSECT
 DC XL4'ð1F' SYSLOG (System Console)

DC XL4'ðBD' 3277 Display Station
 .
 .
 END
 /\
// EXEC LNKEDT

 /&

Figure 15. Job Stream Example for Creating a CDL

Note: The statement

// EXEC ASMA9ð...

calls the High Level Assembler. Refer to “High Level Assembler
Considerations” on page 174 for further details.

Once phase $$A$CDL0 has been cataloged, the CDL addresses remain effective
for subsequent IPLs. However, you may:

� Replace the phase by another one, either by assembling and link editing a new
phase or by using the RENAME function of the librarian program to rename an
already cataloged CDL that has a name other than $$A$CDL0.

� Override any CDL entry by manual intervention. This is the suggested
approach if an erroneous CDL is cataloged in the system library. Use the
MSHP CORRECT function described in the manual VSE/ESA System Control
Statements under “CORRECT”.

The IPL procedure may loop indefinitely if the CDL has been specified
incorrectly. If this happens, it may be helpful to enter manually the device
address for the system console and/or communication device (into low core
locations X'10' to X'13' in hexadecimal format X'00000cuu') when IPL enters the
WAIT state. If the cuu of the system console and the communication device are
the same it must be entered once. If they are different, it must be entered twice
(X'00000cuu00000cuu'). To resume processing, press ENTER at the system
console.

Note that manual intervention does not work for device number 000.

Interrupt IPL Processing for Modifications
If necessary, you can interrupt IPL processing and change currently defined
procedure names or other IPL parameters. There are three methods to interrupt
IPL processing and it depends on your processor which method you can use.
These methods are described in detail under “Interrupt and Restart the IPL
Process” on page 28 below.

Once interrupted, you can enter and modify IPL parameters at the system console
as shown under “Modifying IPL Parameters” on page 29.

26 IBM VSE/ESA Guide to System Functions

 Starting the System

Restrictions when Using the Integrated Console
When your system console is an Integrated Console , you cannot interrupt IPL by
pressing the ENTER key at the console. Also, you cannot restart IPL by an external
interrupt.

If you want to change IPL parameters, you have to request prompting via the IPL
prompting code in the IPL load parameter. This is the only method to be used
with an Integrated Console and described under “Method 1: Interrupt IPL via the
Load Parameter Facility” on page 28.

The IPL Load Parameter
To support the Integrated Console (of an IBM S/390 service processor) the
contents of the IPL load parameter has been changed. The former IPLSTOP load
parameter has been replaced by the following load parameter which allows the
specification of:

 Console type
IPL message suppression code
IPL prompting code
Startup mode prompting code

1 2 3 4 5 6 7 8
 ┌†††┬†††┬†††┬†††┬†††┬†††┬†††┬†††┐
⅞ I ⅞ S ⅞ P ⅞ P ⅞ T ⅞ x ⅞ x ⅞ x ⅞

 └†††┴†††┴†††┴†††┴†††┴†††┴†††┴†††┘
& & & & & & & &
⅞ ⅞ ⅞ ⅞ ⅞ └†††┴†††┘
⅞ ⅞ ⅞ ⅞ │ Reserved
⅞ ⅞ ⅞ ⅞
⅞ ⅞ ⅞ │ Formerly used for Turbo Dispatcher
⅞ ⅞ ⅞
⅞ ⅞ │ Startup Mode Prompting

 ⅞ ⅞
⅞ │ IPL Parameter Prompting

 ⅞
│ IPL Message Suppression

 Console Type

Figure 16. IPL Load Parameter Format

1. The console type specifies whether the messages are to be routed to the
Integrated Console (I) or to a local console (which is the default).

2. The IPL message suppression code can be used to request suppression of
messages and command logging (S) during IPL.

3. The IPL prompting code can be used to request a prompting (P) for IPL
parameters. IPL processing is then interrupted allowing to change or add IPL
parameters. This support is identical to the IPLSTOP function of former
releases and further discussed below .

4. The startup mode prompting code may be used to request prompting (P) for a
startup mode such as BASIC, MINI, or COLD.

5. Starting with VSE/ESA 2.4, position 5 is ignored since the Turbo Dispatcher is
always active.

 Chapter 2. Starting the System 27

 Starting the System

For a detailed description of the operands of the IPL load parameter refer to the
manual VSE/ESA System Control Statements.

Interrupt and Restart the IPL Process

Method 1: Interrupt IPL via the Load Parameter Facility
This method can be used for all three supported IPL console types:

 Integrated Console
 CRT Console

Line Mode Console

It is the only method, however, that can be used with the Integrated Console .

On the program load panel of the system console you can specify that you want
IPL to stop to be able to supply or modify IPL parameters. The normal search
sequence for ASI procedures is then interrupted. Proceed as follows:

� In the IPL load parameter field of the program load panel enter "P" for the IPL
prompting code. Refer also to “The IPL Load Parameter” on page 27.

� If VSE/ESA runs under VM/ESA, enter, for example:

I cuu LOADPARM ..P

� Wait for message

ðIð3D ENTER SUPERVISOR PARAMETERS OR ASI PARAMETERS

� Enter or modify IPL parameters as required and press ENTER. Refer to
“Modifying IPL Parameters” on page 29 for details.

Note that you have to purge explicitly the load parameter field on the hardware load
panel when you re-IPL the system. Otherwise, IPL stops again waiting with
message 0I03D for parameters to be entered.

Method 2: Interrupt IPL via External Interrupt
Note: This method can be used with a CRT or Line Mode console but not with the

Integrated Console.

You can interrupt IPL and restart it in the following way:

� Interrupt IPL processing by creating an external interrupt before message

ðJ1ðI IPL RESTART POINT BYPASSED

appears on the screen.

� When the wait indicator is on, press the REQUEST or ENTER key at the
system console.

You may switch to a system console device different from the one specified in
the IPL procedure by pressing the REQUEST or ENTER key at the device to
be used as system console.

� Wait for message

ðIð3D ENTER SUPERVISOR PARAMETERS OR ASI PARAMETERS

� Enter or modify IPL parameters as required and press ENTER. Refer to
“Modifying IPL Parameters” on page 29 for details.

28 IBM VSE/ESA Guide to System Functions

 Starting the System

Method 3: Interrupt IPL via ENTER Key
Note: This method can be used with a CRT or Line Mode console but not with the

Integrated Console. Use this method if Method 1 or 2 are not successful.

Proceed as follows:

� Press ENTER at the system console before message

ðJ1ðI IPL RESTART POINT BYPASSED

appears on the screen.

� Wait for message

ðJð5D ASI STOP....

� Restart IPL by typing 0 IPL (where 0 is the reply ID of the BG partition) and
press ENTER.

� Press ENTER at the device you want to use as system console.

� Wait for message

ðIð3D ENTER SUPERVISOR PARAMETERS OR ASI PARAMETERS

� Enter or modify IPL parameters as required and press ENTER. Refer to
“Modifying IPL Parameters” for details.

Note: The reply IPL is valid only as a response to message 0J05D if the following
applies:

1. IPL is performed through an ASI IPL procedure.

2. The IPL restart point has not been passed yet.

In all other cases, the command will be rejected with an error message.

Modifying IPL Parameters
When IPL has been interrupted by one of the three methods described before,
then, as a response to message 0I03D, the IPL parameters shown in Figure 17
may be entered. If a $ASIPROC exists, the defaults are taken from $ASIPROC.
Otherwise, system defaults are taken.

55─ ──┬ ┬─────────────── ──┬ ┬──────────────── ──┬ ┬──────────────────── ─────5
└ ┘──IPL=proc_name └ ┘──,JCL=proc_name └ ┘──,TYPE= ──┬ ┬─NORMAL─

 └ ┘─SENSE──

5─ ──┬ ┬─── ─────────────────5%
└ ┘──,STOP= ──┬ ┬─cmd1──────────────────────────────

└ ┘──(cmd1,cmd2 ──┬ ┬──────────────────)
└ ┘──,cmd3 ──┬ ┬───────

└ ┘──,cmd4

Figure 17. Entering IPL Parameters for Modification

IPL=proc_name
This is the name of the IPL procedure to be used to IPL the system. If omitted,
ASI searches for the procedure name in the sequence shown under “Starting
Up the System” on page 21.

 Chapter 2. Starting the System 29

 Starting the System

JCL=proc_name
This is the name of the set of JCL procedures to be used for partition startup. If
omitted, ASI searches for the procedure names in the sequence shown under
“Starting Up the System” on page 21.

TYPE=NORMAL or TYPE=SENSE
Used to specify whether to verify the ADD commands in the chosen IPL
procedure or whether device sensing is to be used to add devices automatically
during IPL. Refer to “The ASI Master Procedure ($ASIPROC)” on page 21 for
further details about the TYPE parameter.

STOP=command(s)
The IPL procedure stops at the specified command, and any IPL command
valid at this point of processing may be entered and modified at the system
console. If you press the ENTER key without any input, then the interrupted IPL
procedure resumes processing.

One or up to four IPL commands may be specified. For example:

 STOP=SUP
 STOP=(SUP,DEF,DLA,SVA)

The IPL commands that may be selected are SUP, ADD, DEL, SET, DEF,
DLA, DLF, DPD, SVA.

Note: Do not specify a DPD command if your system is running without a
page data set (NOPDS).

With the SUP specification you select the IPL supervisor parameters command
for changing one or more of its parameters without creating and cataloging a
new IPL procedure. The physical address of the console device (cuu) cannot
be respecified, since the console device is already known.

Other Input:

If you enter a supervisor name or the supervisor parameters command (SUP) after
message 0I03D, the system enters the conversational IPL mode for further input.
Proceed as follows: enter "name" or "SUP" and press ENTER, then press ENTER
again.

 STOP Processing
IPL processing stops after reading the specified command (Method 1) or after
reading the next command after the ENTER key was pressed or after an external
interrupt was created (Method 2 and 3). The command is read but not processed.

The system displays the command stopped at, issues message 0J05D, and waits
for an IPL command to be entered at the system console. The operator may then
enter one or more IPL commands valid at this point of IPL processing. To change a
command, it is necessary to enter the complete command.

Entering 0 and pressing the ENTER key without any input causes IPL to continue
with the IPL command displayed but not processed yet.

It depends on the IPL command, whether a STOP can be used to change the
command at which IPL stops, or whether you can change previously processed
commands only. Figure 18 on page 31 shows for the various IPL commands
where a STOP can be set to change information, or replace a command or add a

30 IBM VSE/ESA Guide to System Functions

 Starting the System

command. You may also consult Figure 13 on page 19 for easier evaluation of the
commands.

Figure 18. STOP Points of IPL Commands

Command Where to STOP Comment

ADD
DEF
DEL

STOP=next IPL
command in
procedure behind
command or group of
commands if of same
type

Case A:

The command(s) entered after message 0J05D may override
parameters previously specified in one of the commands of this
command group. A new command may also be specified. Pressing
ENTER without any input causes ASI to resume processing with the
command stopped at.

DLA
DLF
DPD

STOP=DLA
STOP=DLF
STOP=DPD

Case B:

The complete DLA or DLF or DPD command may be entered after
message 0J05D. In case of DPD be sure to enter all page data set
extents. Next, the DLA or DLF or DPD command read from the
procedure is interpreted, but rejected with message 0I36D since
the newly entered command is now valid. When pressing ENTER,
ASI proceeds with reading the next command from the procedure.

SET STOP=next IPL
command in
procedure

Case C:

The parameters of the SET command entered after message 0J05D
override the parameters of the original SET command. The
parameters not respecified keep their original value.

SET XPCC STOP=next IPL
command in
procedure behind
command or group of
commands if of same
type

Case A applies (see above)

SVA STOP=SVA Case D:

The command entered after message 0J05D is processed, and the
original command from the procedure is ignored .

SYS STOP=next IPL
command in
procedure behind
command or group of
commands if of same
type

Case A applies (see above)

Supervisor
parameters
command

STOP=SUP Case D applies (see above)

Note: The supervisor parameters command is the only valid
command at this point of IPL processing that can be
changed. In addition, you can use this stop to restart IPL
processing by typing IPL as a response to message 0J05D.

Example for Changing the PASIZE
The PASIZE is a parameter of the IPL SYS command. As STOP point the SVA
command is chosen since it follows in the command sequence after the SYS
command (it is in fact the last command of an IPL procedure). To change the
PASIZE, proceed as follows:

1. Interrupt IPL processing as described under “Interrupt and Restart the IPL
Process” on page 28.

 Chapter 2. Starting the System 31

 Starting the System

2. As a response to message 0I03D enter STOP=SVA and press ENTER.

3. ASI continues IPL processing up to the SVA command which it reads but does
not process.

As a response to message 0J05D enter the SYS command with the new
PASIZE value (which overrides the original value).

4. Press the ENTER key to continue IPL processing with the SVA command.

Example for Changing the VSIZE
The VSIZE is a parameter of the supervisor parameters command, the first
command in any IPL procedure. To change the VSIZE, proceed as follows:

1. Interrupt IPL processing as described under “Interrupt and Restart the IPL
Process” on page 28.

2. As a response to message 0I03D enter STOP=SUP and press ENTER.

3. ASI stops before the supervisor parameters command is processed.

As a response to message 0J05D enter the complete supervisor parameters
command with the new VSIZE value.

4. Press the ENTER key to continue IPL processing.

Loading Phases into the SVA
 Programs residing in the shared virtual area (SVA) can be used concurrently by
programs running in different partitions. Such programs must be relocatable and
re-enterable. Certain system phases must reside in the SVA but user programs, if
required, can also be loaded into the SVA. Consider to place only those user
phases into the SVA which are effectively used in a reentrant way by several tasks
and partitions. “Coding for the Shared Virtual Area” on page 240 provides
additional information important when writing programs that are to reside in the
SVA.

A phase that is to be loaded into the SVA must be SVA eligible, that is, it must first
be cataloged with the SVA parameter specified in the in the linkage editor PHASE
statement. Refer to “Link-Editing for Inclusion in the SVA” on page 192 for further
details.

During IPL, VSE/ESA loads system phases from IJSYSRS.SYSLIB into the SVA
(according to internal load lists).

 In addition, during system startup VSE/ESA loads SVA-eligible phases through the
SET SDL command into the SVA. This command maintains the SDL (system
directory list) which includes the names of the phases that are to be loaded into the
SVA. SET SDL can only be issued from the BG partition which is outlined further
under “Automatic SVA Loading During System Startup” on page 33.

The operator can use the SET SDL command (from the BG partition) at any time
after system startup to load phases into the SVA.

32 IBM VSE/ESA Guide to System Functions

 Starting the System

SVA (24-Bit) and SVA (31-Bit)
As shown in Figure 7 on page 7, VSE/ESA includes an SVA (24-Bit) and an SVA
(31-Bit) area. Programs that are loaded into the SVA are stored in the virtual library
area (VLA) of the respective SVA. Even if there are two SVAs in a system there is
always one SDL only. It resides in the SVA (24-Bit) and also addresses phases in
the "high" VLA of the SVA (31-Bit).

SET SDL tries to load phases with the attribute RMODE=ANY into the "high" VLA
first. If the space there is not sufficient, VSE/ESA stores it in the VLA of the SVA
(24-Bit). Under “Introducing AMODE and RMODE”, the manual VSE/ESA Extended
Addressability provides details about the RMODE (residency mode) attribute and
other items related to 31-bit addressing.

Automatic SVA Loading During System Startup
During system startup, VSE/ESA loads those system phases into the SVA which
are required there. Phases that reside in IJSYSRS.SYSLIB are loaded during IPL,
phases from PRD1.BASE are loaded later by the BG startup procedure $0JCL. If
you want to add SVA phases to the system and want to have them loaded during
startup, it is advisable to create a private load book and modify $0JCL as described
in the following paragraphs.

It may, however, be necessary to have private SVA phases loaded before JCL
becomes active (JCL exit routines, for example). At IPL time, no private load books
can be specified since IPL SVA load books have predefined names. However, a
name is reserved for private use: $SVA0000. Load book $SVA0000 is initially
shipped as an empty phase. If you want to include the names of your own phases,
you have to assemble and catalog this load book into IJSYSRS.SYSLIB as shown
in Figure 21 on page 35. The name of the load book must be $SVA0000.

The following paragraphs describe how the system loads SVA phases from
PRD1.BASE, and what has to be done to have private SVA phases loaded from
private libraries automatically during startup.

Notes on the Startup Procedure $0JCL for the BG Partition
As shipped, startup procedure $0JCL includes the following statements for loading
SVA phases for the components VTAM, CICS, REXX/VSE and the High Level
Assembler:

// EXEC PROC=LIBSDL
SET SDL
LIST=$SVAVTAM
LIST=$SVACICS
LIST=$SVAREXX
LIST=$SVAASMA
/\

Procedure LIBSDL establishes the LIBDEF chain including library PRD1.BASE in
which VTAM, CICS, REXX/VSE, and the High Level Assembler reside. The load
lists $SVAVTAM, $SVACICS, $SVAREXX, and $SVAASMA identify the phases to
be loaded from PRD1.BASE (and not IJSYSRS.SYSLIB) into the SVA.

To load SVA phases of VSE/ESA optional programs, other IBM licensed programs,
or of your own programs modify procedure $0JCL through skeleton SKJCL0. The

 Chapter 2. Starting the System 33

 Starting the System

skeleton is described in the manual VSE/ESA Administration under “Skeletons for
Starting Up BG Partition”.

If you install a program that includes SVA eligible phases, you can load them phase
by phase or catalog a load list that identifies these phases. In each case, you must
ensure that the sublibrary in which these programs and their SVA phases reside is
included in the LIBDEF chain for the BG partition.

Loading Single Phases or Using a Load List
You can use the SET SDL command to load single phases or to specify a load list
as shown by the job stream examples below. If a SET SDL command is processed,
VSE/ESA searches for requested phases always in the active library chain (//
LIBDEF PHASE,SEARCH=...) and in the system sublibrary IJSYSRS.SYSLIB. In
case of a load list, VSE/ESA starts the search sequence with IJSYSRS.SYSLIB.

For automatic SVA loading, you can include such statements as shown in the
examples below in procedure $0JCL (except for the statements // JOB and /&).

Job Stream Example for Loading Single Phases

// JOB LOAD INTO SVA
// DLBL library,'libraryname'
// EXTENT ,volid
// LIBDEF PHASE,SEARCH=library.sublibrary
SET SDL
PROGAA1,SVA
PROGAA2,SVA
PROGAA3,SVA
PROGAAB1,SVA
PROGAAB2,SVA
/\
/&

Figure 19. Loading Single SVA Phases

Note that without the operand SVA, VSE/ESA would only create an entry in the
SDL but not load the phase into the SVA.

Job Stream Example for Loading Phases through a Load List

// JOB LOAD INTO SVA
// DLBL library,'libraryname'
// EXTENT ,volid
// LIBDEF PHASE,SEARCH=library.sublibrary
SET SDL
LIST=$SVAPROG
/\
/&

Figure 20. Loading SVA Phases Through a Load List

It is assumed that load list $SVAPROG includes the entries of the programs listed
in Figure 19.

34 IBM VSE/ESA Guide to System Functions

 Starting the System

Creating an SVA Load List
To create a load list of your own, proceed as follows:

1. It may be useful to first submit a job as the one shown below. This gives you a
listing of the names of the phases that the system loads into the SVA from a
specific library. Such listings help you ensure that you do not specify the names
of phases that are already included in existing load lists.

// JOB PRINT LOAD LIST CONTENTS
// EXEC LIBR
ACCESS SUBLIB=library.sublibrary
LIST $SVA\.PHASE
/\
/&

2. Assemble and catalog your own load list by using macro SVALLIST . To do
this, use a job similar to the one shown in Figure 21.

// JOB BUILD LOAD LIST
LIBDEF PHASE,CATALOG=library.sublibrary,SEARCH=library.sublibrary
// OPTION CATAL
// EXEC ASMA9ð....
 SPACE
SIPL TITLE '$SVAPROG PRIVATE SVA LOAD LIST'
 SPACE
 SVALLIST $SVAPROG,(phaseð1),(phaseð2),(phaseð3), C
 (phaseð4),(phaseð5),(phaseð6),(phaseð7), C

(phaseð8), ... ,(phasenn)
 END
/\
// EXEC LNKEDT
/&

Figure 21. Creating an SVA Load List

For macro SVALLIST you have first to provide the name chosen for the load list
($SVAPROG) and then the names of the phases as shown. In theory, the number
of phases that you can specify is unlimited. However, the more phases your load
list includes the more virtual storage is required by the SVA.

Note: The statement

// EXEC ASMA9ð....

calls the High Level Assembler. Refer to “High Level Assembler
Considerations” on page 174 for further details.

Notes on the SVA Command
There is a need to adjust the SVA storage requirements when loading additional
phases. Use the SVA command with its operands SDL, PSIZE, and GETVIS to
increase the SVA size beyond the size set by the system during IPL. The
operands add space for:

� System directory list entries (SDL).

� Phases that are to be loaded into the SVA after system startup (PSIZE).

� The system GETVIS area (GETVIS).

 Chapter 2. Starting the System 35

 Starting the System

As shipped, VSE/ESA reserves SVA space for its basic system phases and
functions only.

For phases you want to have additionally loaded into SVA, increase the values
specified in the SVA command for SDL and PSIZE. An increase of GETVIS may
also be needed to reflect the system GETVIS requirements of your own programs.

For syntax and parameter details of the SVA command, refer to the manual
VSE/ESA System Control Statements under “SVA”.

Notes on Using the SET SDL Command
The SET SDL command is available for building SDL entries and loading phases
into the SVA. Processing of the SET SDL command involves, for each specified
phase, a search through one or more directories of the sublibraries that you have
chained via the // LIBDEF job control statement to the BG partition.

If a search chain is not defined, only the system library IJSYSRS.SYSLIB is
searched.

Other important points to note:

� A user who wants to build an SDL entry and load a phase into the SVA from
an access-control protected sublibrary must have at least read access to the
phase.

� With VSE/ESA you can also PFIX phases in the SVA. Refer to the description
of the PHASE statement in the manual VSE/ESA System Control Statements
under “PHASE”.

� Note that a fresh copy of the phase is loaded each time a SET SDL command
for that phase is issued; multiple specifications may thus lead to an "SVA full"
condition.

� It is recommended that you run the librarian program with the LISTDIR
command after a SET SDL job stream to be certain that the entries are
included as intended.

Replacing Phases Stored in the SVA
The following discussion applies to a system for which no re-IPL is performed.

Occasionally, a phase stored in the SVA needs to be changed; that is, it must be
replaced by an updated version. To replace a phase in the SVA, you can link edit
the updated version of the phase to the system sublibrary (IJSYSRS.SYSLIB), if
possible. Link editing to a sublibrary other than the system sublibrary does not
cause an immediate update in the SVA (the same applies to a deletion or a
renaming of a phase).

The old version of the phase remains in the SVA, but its address is no longer
available in the SDL (system directory list).

The change or resetting of a search chain that was used for the processing of a
SET SDL command has no effect on the SVA. Therefore, phases loaded from a
chained sublibrary stay in the SVA even after this chain is dropped.

36 IBM VSE/ESA Guide to System Functions

 Starting the System

User-Defined Processing after IPL
At large VSE installations, it may be desirable to perform certain processing at the
end of an IPL procedure. It may, for instance, be important to know who performed
the procedure, whether the right system pack was mounted, and whether the
correct date was entered for the new work session. If you work with labeled data
files it is important that they bear the correct creation date, so as to guarantee that
data files are protected until their expiration date.

After the IPL procedure has been completed, control can be passed to a user exit
routine (phase name = $SYSOPEN) that you may include for the purpose of
checking system security and integrity. This routine is called once after every IPL
procedure. The VSE/ESA distribution tape contains a dummy phase $SYSOPEN in
the system sublibrary. If you do not use the facility, this phase has no effect on
your system. Conventions for writing this kind of exit routine, together with an
example, are discussed under “Writing an IPL Exit Routine” on page 209.

 Chapter 2. Starting the System 37

 Starting the System

38 IBM VSE/ESA Guide to System Functions

 Controlling Jobs

 Chapter 3. Controlling Jobs

 Introduction
The unit of work that is submitted to the system for execution is called a job. A job,
and the environment in which it is to run, must be defined to the system through job
control statements and commands. These job control statements and commands
are processed by the job control program which is automatically loaded into storage
as required.

The job control program provides automatic job-to-job transition. In other words, an
unlimited number of jobs can be submitted to the system in one batch, and job
control processes one job after the other without requiring intervention by the
operator. The job or jobs submitted are referred to as a job stream.

The normal input source for the job control program is the logical unit SYSRDR.
However, it accepts commands submitted through the console (SYSLOG).

When system startup has been completed, the job control program is ready to read
any job control statements or commands that you submit. Normally, these are
entered from the unit assigned to SYSRDR, occasionally also from the console.

The job control program runs in virtual mode in any partition. It is active only
between jobs and job steps, and is not present in the partition while a program is
being executed.

After each job control statement is read, control can be given to a user exit routine,
which can examine and alter the input before it is processed by the system. For a
description of this facility, refer to Chapter 6, “Using VSE Facilities and Options” on
page 207.

Whenever applicable, this section shows whether a particular function can be
performed using statements, commands, or both. For a detailed description of the
formats and operands of statements and commands, refer to the manual VSE/ESA
System Control Statements.

Relating Files to Your Program
Most programs process files that are stored on auxiliary storage devices. Before
such files can be processed, certain information about them must be provided to
the system. This information includes:

� The address of the I/O device on which each of the files resides.

� For files on disk storage devices: the exact location of the file on the storage
medium.

� For files on disk, on diskette, or on labeled magnetic tape: a description of the
file label, which is used for checking and protection purposes.

The above information, specified in job control label-information statements, is
stored in the system by the job control program for use by the data management
routines. How this is done is described below.

 Copyright IBM Corp. 1984, 1999 39

 Controlling Jobs

 I/O Assignments
Whenever a program needs access to a file on auxiliary storage that program need
not specify an actual device address but only a symbolic name, which refers to a
logical rather than a physical unit. Before the program is executed, that logical unit
must be associated with an actual device. This is done by the job control program
when it processes an ASSGN statement or command which specifies the symbolic
name of the logical unit and one of the following:

� A general device class or specific device type, with or without volume serial
number.

� The physical address (channel and unit number) of the I/O device.

� A list of physical addresses.

� Another logical unit.

See Figure 22 for an illustration of some of these combinations.

Assignments are effective only for the partition in which they are issued.

000001

130

0 0 0 0 0 2

1 3 1

0 0 0 0 0 3

1 3 2

Devi c e l i s t - i f d r i ve 130 i s u n ass ig n ed SYS002 w i l l b e ass ig n ed
to i t , i f i t i s ass ig n ed t h e o p era t i n g sys tem t r i es 131 .

Devi c e Typ e - t h e o p era t i n g sys tem searc h es fo r t h e d ev i c e t yp e
(FBA i n t h i s c ase) t h a t i s ava i l ab le an d h as t h e vo lu m e- id 000003.

Devi c e c l ass - t h e o p era t i n g sys tem searc h es fo r an ava i l ab le t ap e
d evi c e .

Proc ess ing Prog ram

DEVADDR= SYS002

Job Contro l

/ / ASSGN SYS002,(130,131)

/ / ASSGN SYS003,VOL= 000003,FBA

/ / ASSGN SYS004,TAPE

A

C

B

A

B

C

.
.

.

Figure 22. Example of Symbolic I/O Assignments (Part 1)

40 IBM VSE/ESA Guide to System Functions

 Controlling Jobs

00E

/ / ASSGN SYS008,00E

DEVADDR= SYS008

Jo b Co n t ro l

Processing Prog ram

I/ O Devic e

.
.

.

1. The logical unit specified in the processing program (via DTF for example)
is a print file referred to by the symbolic device name SYS008.

2. An ASSGN statement is used to associate SYS008 with the physical address
00E of a printer.

Figure 23. Example of Symbolic I/O Assignments (Part 2)

 Chapter 3. Controlling Jobs 41

 Controlling Jobs

Processing of File Labels
As shown above, the operating system relates physical devices to logical names,
used in programs, via the ASSGN job control statement (or command). Certain
device types (magnetic tape, disk, and diskette) have removable volumes. It is
important to ensure that the volume(s) containing the file(s) to be processed are
present on the assigned device(s).

Labels are records that are stored on magnetic tape, disk volumes, and diskettes. It
is through these labels that the system makes sure that the desired volume of data
is mounted. Labels are processed by the data management routines. Magnetic tape
file labels are optional, although desirable for reasons of data integrity.

Note: The manual VSE/ESA System Macro User's Guide describes tape, disk,
and diskette labels in detail and shows their layout.

File labels are written by the system when a file is created, based on label
information submitted through job control statements. Libraries are treated in the
same way and are considered as files.

To write a file label on magnetic tape, job control uses the information supplied in
the TLBL statement. This label is written immediately preceding the associated file.

To write a file label on disk or on diskette, job control uses the information supplied
in the DLBL and EXTENT statements. When a labeled file is to be processed, the
required // TLBL, or // DLBL and // EXTENT information must be available, so that
job control can perform the desired label checking on your existing file. Figure 24
on page 43 shows the relationship of label information that you provide by the
above mentioned statements.

42 IBM VSE/ESA Guide to System Functions

 Controlling Jobs

Figure 24. File Label Processing

 Chapter 3. Controlling Jobs 43

 Controlling Jobs

When the program that processes the file is executed, the data management
routines access the label information

� to write the appropriate labels onto the storage volume, and to check that no
unexpired files are overwritten, if the file is to be created, or

� to check the contents of the label information area against the file label, if an
existing file is to be processed. This ensures, for example, that the correct
volume is mounted.

The TLBL, or DLBL and EXTENT job control statements may be submitted with
each execution of a given program that processes labeled files. Job control
temporarily stores these statements in the label information area. A recommended
alternative for frequently accessed files is to store the label information permanently
in the label information area.

The first two parameters of both the TLBL and DLBL statements are the same:

// TLBL filename,'file-id'
// DLBL filename,'file-id'

You code a 'filename' in your program to identify a file. For example:

� In assembler language it is the name assigned to the DTFxx macro
(DTF=Define the File).

� In COBOL it is the name specified in the SELECT clause.

� In PL/I it is the identifier (with the FILE attribute) in the DECLARE statement.

� In RPG it is the name given for filename.

� In FORTRAN it is the file name associated with the data set reference number.

The system uses the filename from your program as a search argument in
searching for label information in the label information area; therefore, you must
code a matching filename in your // TLBL and // DLBL statements.

After the DLBL or TLBL statement has been located (based on filename), the file-id
is used by the system to:

� Create a label for an output file.

� Locate and check the labels of an input file.

The Label Information Area
The label information area resides on DOSRES and on the virtual disk with the
address FDF. The label area is created during IPL by the DLA command, or reused
if it already exists. Label information can be either stored temporarily (for the
duration of one job or job step) or permanently.

Label information supplied within a job is automatically kept for the duration of that
job, that is, temporarily. To make label information available for all the following
jobs in a static partition, enter the job control statement:

// OPTION PARSTD=ADD

followed by the TLBL, DLBL and EXTENT statements.

44 IBM VSE/ESA Guide to System Functions

 Controlling Jobs

To make label information available for all the following jobs in a dynamic partition
of class 'class', enter the following in the BG partition:

// OPTION CLASSTD=(class,ADD)

followed by the TLBL, DLBL and EXTENT statements.

To make label information available throughout the system (for all the following jobs
in any static or dynamic partition), enter the following in the BG partition:

// OPTION STDLABEL=ADD

followed by the TLBL, DLBL and EXTENT statements.

Label information can be selectively deleted by using the commands:

// OPTION PARSTD=DELETE (for partition standard labels of static
 partitions)

// OPTION CLASSTD=(class, DELETE) (for class standard labels of dynamic
partitions, from BG partition)

// OPTION STDLABEL=DELETE (for system standard labels, from BG
 partition)

For further details about the OPTION statement, refer to the manual VSE/ESA
System Control Statements under “OPTION”.

Standard Label Procedures
VSE/ESA includes standard label procedures named STDLABEL, STDLABUP, and
STDLABUS details of which are provided in the manual VSE/ESA Planning under
“Standard Label Procedures”.

Defining a Job
A program to be executed in a job is requested through an // EXEC statement. The
occurrence of an // EXEC statement is called a job step . Each job may consist of
one or several job steps. The beginning and end of a job are defined by the // JOB
and /& (end-of-job) statements.

Figure 25 on page 46 shows an example of a multi-step job.

 Chapter 3. Controlling Jobs 45

 Controlling Jobs

(1) // JOB PAYCHEX
 .
(2) additional job control statements

 .
(3) // EXEC PAYROLL

 .
 .
 .
(3) // EXEC CHECK

 .
 .
 .
 (4) /&

1. Defines the beginning of a job. For jobname, you may specify a name of
your own choice.

2. Additional job control statements if required.

3. The two job steps. Job control is reloaded into storage at the end of each
job step, enabling the reading of subsequent job control statements.

4. At the end of the CHECK program's execution job, job control is
reloaded and reads the end-of-job indicator.

Figure 25. Control Statements Defining a Job Consisting of Two Job Steps

You may include as many job steps in a job as you wish. However, you should not
execute in one job several programs that are completely independent of one
another. If one step terminates abnormally, the job control program ignores the
remaining job steps up to the next /& or // JOB statement, unless you specify some
other action in an ON statement. See the section “Using Conditional Job Control”
later in this chapter.

Following are some additional details about the job and end-of-job (/&) statements.
The EXEC statement is discussed later in this chapter.

The JOB Statement
The JOB statement indicates the beginning of control information for a job. The
specified job name is used, for example, by job accounting and to identify listings
produced during the execution of the job. A JOB statement without a job name is
rejected by job control as an invalid statement.

If the JOB statement is omitted, the system uses NO NAME as the job name. The
JOB statement, however, should not be omitted, since many functions assume its
presence. If, for example, the operator cancels a job using the attention routine
CANCEL command, the job control program normally bypasses all statements on
SYSRDR until it encounters a /&; However, if the job in question was submitted
without a JOB statement, no statements in the job stream are bypassed even
though job NO NAME was canceled. Also, no conditional job control and no
symbolic parameters can be specified without a preceding JOB statement.

Having JOB statements with specific job names is useful when you issue the MAP
command in a multiprogramming environment. The MAP command displays on
SYSLOG the storage allocations for each partition, together with the name of a job
that is currently active in the corresponding partition.

46 IBM VSE/ESA Guide to System Functions

 Controlling Jobs

The JOB statement is always printed, together with the time of day, on SYSLST
and SYSLOG. The JOB statement causes a skip to a new page before printing is
started on SYSLST.

The End-of-Job (/&) Statement
This statement is the last one for each job (not job step); if it is omitted, the next
JOB statement will cause control to be transferred to the end-of-job routine to
simulate the /& statement.

When a /& statement is encountered, the job control program performs operations
such as the following:

� Resetting all job control options for the partition to standard: either as
established by the STDOPT command, or the system default if the particular
option was not set through a STDOPT command.

� Resetting the PFIX limits to 0 if not requested otherwise in the SETPFIX
statement.

� Resetting all temporary system and programmer logical unit assignments for
the partition to the permanent assignment established by job control
commands.

� Resetting conditional job control information to default values and resetting
symbolic parameter definitions to undefined, if required.

� Deactivating all temporary library chains for the partition.

� Resetting the date from the DATE statement to the system date.

� Setting the user area and the UPSI byte to zero.

� Displaying an end-of-job (EOJ) message on SYSLST and SYSLOG.

� Ensuring that end-of-file has been reached on SYSIPT.

� Deleting the temporary labels in the label information area.

� Releasing temporary LIBSERV MOUNT requests.

 � Enforcing end-of-procedure.

� Resetting user identification acquired by an ID statement if security is active.

For more information on label processing, refer to “Storing Label Information” on
page 59.

 Job Streams
The job control program provides automatic job-to-job transition. You can submit an
unlimited number of jobs to a partition of the system in one batch, and the system
processes one job after the other without requiring intervention by the operator
(except replying to messages). The job or jobs submitted are referred to as a job
stream . Figure 26 on page 48 shows an example of a job stream. It includes two
jobs, named PAY1 and STOCK, each with two steps (each occurrence of an EXEC
statement with a program name is a job step).

 Chapter 3. Controlling Jobs 47

 Controlling Jobs

// JOB PAY1
// ASSGN SYSLST,ððE
// ASSGN SYSðð1,16ð
// DLBL FILEP,'PAYFILE',....
// EXTENT SYSðð1,....
// EXEC PAYRUN
// PAUSE LOAD PAYCHECKS
// EXEC PAYCHK
/&
// JOB STOCK
// ASSGN SYSLST,ððE
// ASSGN SYSðð3,162
// DLBL FILEP,'STKFILE',....
// EXTENT SYSðð3,....
// EXEC STKRUN
// EXEC STKLIST
/&

Figure 26. Example of a Job Stream

When setting up a job stream for a partition, you should bear in mind that all jobs
will get the priority of that partition. Therefore, careful selection of the jobs for a
particular partition in a multiprogramming system can help to improve the efficiency
of your installation. For example, jobs which have a relatively low CPU usage and a
relatively high rate of I/O activity and which, therefore, spend most of their time
waiting for the completion of I/O operations, should run in a high-priority partition.
Conversely, CPU-bound jobs should be in a partition with a lower priority.

The operator may want to interrupt the processing of a job stream in any partition,
for example, to make last-minute changes to one of the jobs or to squeeze in a
special rush job. He does this by using the PAUSE statement or command.

 PAUSE Statement
This may be included anywhere among the job control statements of a job stream.
It becomes effective at the point where it was inserted. Processing is suspended in
the affected partition, waiting for operator input. The statement can contain
instructions to the operator, and is always displayed on SYSLOG.

 PAUSE Command
This may be entered either at the operator console or within a job stream together
with the job control statements for a job. When it encounters a PAUSE command,
the system passes control of the specified partition to the operator console the next
time it encounters end of job or end of job step.

Job Control for Device Assignments
When a program is to access a file the system needs the following information on
the particular file:

� The address of the physical device where the file resides.

� For files on disk devices, the exact location of the file (extent information).

48 IBM VSE/ESA Guide to System Functions

 Controlling Jobs

� For files on disk, diskette and labeled tapes, information required for checking
and protection purposes (part of the label information).

To associate a logical unit with an actual physical device, you have to use the
ASSGN statement in the partition in which the program is to run.

Following is a discussion of the logical units that can be used.

 Logical Units
There are two types of logical units: system logical units, primarily used by the
system programs, and programmer logical units, primarily used by the
user-written programs. The following list shows the names of the logical units and
the I/O devices that each of these logical units can represent. In the case of disk
devices, the logical unit is not assigned to the entire volume mounted on the device
but only to the referenced extent(s).

Logical unit name Type of I/O device

SYSRDR Card reader, magnetic tape unit (single volume), disk, or
diskette; used as input unit for job control statements or
commands.

SYSIPT Card reader, magnetic tape unit (single volume), disk, or
diskette; used as input unit for programs.

SYSPCH Card punch, magnetic tape unit, disk, or diskette; used as the
unit for punched output.

SYSLST Printer, magnetic tape unit, disk, or diskette; used as the unit
for printed output.

SYSLOG Operator console; used for communication between the
system and the operator.

SYSLNK Disk; used as input to the linkage editor.

SYSRES System library extent on a disk volume (DOSRES).

SYSREC One disk extent is used to store error records collected by
the error recovery and recording function in the system. A
separate SYSREC extent is used to store console
communication in the hardcopy file. A third SYSREC extent
holds the system history file.

SYSCAT Disk; used to hold the VSE/VSAM master catalog.

SYSCTL For system use.

SYSnnn (where nnn = 000 .. 254). Format for naming programmer
logical units, which are discussed later in this section.

System Logical Units
All of the above logical unit names, except SYSnnn, represent system logical units
(as opposed to programmer logical units). Of these system logical units,
user-written programs may use SYSIPT and SYSRDR for input, SYSLST and
SYSPCH for output, and SYSLOG for communication with the operator. No other
system logical units may be used within user-written programs (or label information
statements, which are discussed later in this section).

 Chapter 3. Controlling Jobs 49

 Controlling Jobs

Two additional symbolic names, SYSIN and SYSOUT, are used under certain
conditions:

SYSIN Can be used if you want to assign SYSRDR and SYSIPT to
the same card reader or magnetic tape unit. Must be used if
you want to assign SYSRDR and SYSIPT to the same disk
or diskette extent.

SYSOUT Must be used if you want to assign SYSPCH and SYSLST to
the same magnetic tape unit. SYSOUT cannot be used to
assign SYSPCH and SYSLST to disk or diskette because
these two units must refer to separate extents.

SYSIN and SYSOUT are valid only for the job control program, and cannot be
referenced in a user-written program. Examples for the use of SYSIN and SYSOUT
are given in the section “Handling of System Input and Output” on page 73.

Programmer Logical Units
Programmer logical units may be assigned to any I/O device installed on the
system. Each partition must have at least 10 programmer logical units, and can
have at most 255 (SYS000 - SYS254). The total number of available programmer
logical units is set during system startup (supervisor generation option NPGR), see
VSE/ESA Planning for details. The number of programmer logical units available for
a given static partition can be defined with the NPGR command, see VSE/ESA
System Control Statements for details.

Types of Device Assignments
Device assignments are either permanent or temporary, depending on the time of
the assignment and the type of ASSGN statement or command used. Device
assignments are set up between jobs or job steps any time after IPL by the ASSGN
job control command (no //) or the // ASSGN job control statement.

Permanent Device Assignments
A permanent assignment may look as follows:

// ASSGN SYSðð9,13ð,PERM

It is valid as long as a static or dynamic partition exists, unless superseded by
another ASSGN job control command. A permanent assignment can be changed
for the duration of a job or job step by a // ASSGN statement, or by an ASSGN
command with the TEMP operand.

Temporary Device Assignments
A temporary assignment may look as follows:

// ASSGN SYSðð8,13ð,TEMP

It is valid for a single job only, unless superseded by another temporary or
permanent assignment. Temporary assignments are reset by:

� a /& or JOB statement, whichever occurs first, or by

� a RESET job control statement or command.

The permanent assignment which was valid before the temporary assignment was
made becomes valid again.

50 IBM VSE/ESA Guide to System Functions

 Controlling Jobs

 Restrictions
1. If one of the system logical units SYSRDR, SYSIPT, SYSLST, or SYSPCH is

assigned to a disk extent or a diskette, the assignment must be permanent.

2. If SYSIN is assigned to a disk or diskette extent, this assignment must be
permanent.

3. SYSOUT, if used, must be a permanent assignment.

4. Before a tape unit is assigned to SYSLST, SYSPCH, or SYSOUT, all previous
assignments to this tape unit must be permanently unassigned. This may be
done by using a DVCDN command.

5. The following restrictions exist for dynamic partitions: SYSIN, SYSRDR,
SYSIPT, SYSLST, and SYSPCH cannot be assigned to disk or diskette units.

Device Assignments in a Multiprogramming System
Each partition has its own set of system logical units. For example, the BG partition
has a SYSRDR, SYSLST, SYSIPT etc. as do all the other generated partitions. As
each partition is started, assignments must be made for the system logical units.
Some assignments need be made only in one partition and are valid for all
partitions. These are logical units that service the system. The following units fall
into this category:

Logical name How assigned

SYSLOG ASSGN job control command (permanent)

SYSREC IPL DEF command

SYSRES Disk address entered at IPL

SYSCAT IPL DEF command, if VSE/VSAM is used.

All of the other system logical unit assignments must be made for each individual
partition.

Each partition also has its own set of programmer logical units (SYS000 through
SYSnnn) where nnn is the number of programmer logical units specified for the
partition minus 1.

You must make assignments of the programmer logical units as needed by the
programs running in each partition. Certain IBM-supplied programs require specific
programmer logical unit assignments. For example the linkage editor requires
SYS001 and the assembler requires SYS001, SYS002, and SYS003.

 Shared Assignments
Within the same partition, different logical units may be assigned to the same
physical device. For example:

// ASSGN SYSLST,ððE
// ASSGN SYSðð7,ððE

Both logical names SYSLST and SYS007 are assigned to the device at address
00E.

 Chapter 3. Controlling Jobs 51

 Controlling Jobs

Normally it is not possible to share physical devices (except disk devices) between
partitions. For example, if you have a tape drive assigned to the BG partition, but
not used by that partition, you must first unassign it in BG before attempting to
assign it in F2. However, if you use a spooling program, such as VSE/POWER, you
can share unit record devices (printer or card reader, for example) between
partitions.

With disk devices this problem does not exist, because each extent on a disk is
treated as a separate device. Also, support is available that allows an assignment
to a disk extent to be shared by two or more programs.

Eac h p ar t ion has i ts own set o f p rog ram m er log ic al un i ts .

Eac h ass ig nm en t m ust b e fo r a sep arate exten t on the d isk un less
the p ar t i t ions on ly have to read a f i le and no t up d ate i t .

These ass ig nm en ts al low ac c ess to the tap e vo lum e b y th ree
d i f feren t log ic al un i t nam es. No ass ig nm en ts to th is tap e are
val id from a p ar t i t ion o ther than BG at th is t im e.

SYS005

SYS005

SYS005

SYS005

SYS005

SYS006

SYS006

SYS007

SYS007B G

B G

B G

B G

B G

F2

F2

F1

F1

191

191

192

193

280

A

B

C

A

B

C

Figure 27. Possible Device Assignments

Figure 28 shows the logical units needed for an assembly.

The illustration shows that the ASSGN statements, unless they have been
submitted previously as permanent assignments, must precede the EXEC
statement of the job step for which they are to be effective. The device
assignments for compilers are similar to the device assignments shown in this
assembler example; any variations are documented in the applicable programmer's
guides.

Note: In VSE/ESA, all the assignments shown in Figure 28 are predefined and
need not be made.

52 IBM VSE/ESA Guide to System Functions

 Controlling Jobs

Figure 28. Device Assignments Required for an Assembler Run

Logical Unit Purpose Input/Output Medium

*)SYSDR Read job control statements:
// JOB ...
// ASSGN SYSIPT,...
// ASSGN SYSLST,...
// ASSGN SYS001,...
// ASSGN SYS002,...
// ASSGN SYS003,...
// ASSGN SYSPCH,...
// ASSGN SYSLNK,...
// OPTION ...
// EXEC ASMA90....
/&

Disk, diskette, tape, card reader

*)SYSIPT Read the source program (under control of
the assembler program)

Disk, diskette, tape, card reader

SYSLST Assembler list output Printer, disk, tape, diskette

SYS001
SYS002
SYS003

Assembler work file
Assembler work file
Assembler work file

Disk
Disk
Disk

+)SYSPCH Assembler punched output Disk, tape, card punch, diskette

+)SYSLNK Assembler generated object module Disk

*) Must be SYSIN if both SYSDR and SYSIPT are assigned to the same disk or diskette extent.
+) Is optional.

Note: The statement

// EXEC ASMA9ð....

calls the High Level Assembler. Refer to “High Level Assembler
Considerations” on page 174 for further details.

Additional Assignment Considerations
This section discusses statements and commands that can be used in context with
logical unit assignments.

The ASSGN Statement/Command
 The ASSGN statement or command is used to connect a logical I/O unit to:

� a general device class

� a specific device type

� a physical device

� a list of physical devices, or

� another logical unit.

Optional operands of the ASSGN statement or command can also be used:

� to specify whether the assignment is temporary or permanent;

� to specify a volume serial number for a tape, disk, or diskette;

� to specify that a disk is shareable by more than one partition or logical unit;

� to unassign a logical unit to free it for assignment to another partition;

 Chapter 3. Controlling Jobs 53

 Controlling Jobs

� to ignore the assignment of a logical unit, that is, program references to the
logical unit are ignored (useful in testing and certain rerun situations);

� to specify an alternate tape unit to be used when processing multivolume tape
files.

Job Control for Label Information
The following section discusses label information for files on disk devices, on
magnetic tape, and on diskettes.

Label Information for Files on Disk Devices
After you have informed the system, via the ASSGN job control statement or
command, which volume or physical device is to be used, you must supply the
following information to allow the creation (output files) or checking (input files) of
labels:

1. A description of the characteristics of the file. You specify this in the DLBL job
control statement.

2. For non-VSAM files only: the exact location of the file on the storage medium.
You specify this in one or more EXTENT job control statements.

The label information you supply in the DLBL job control statement may include the
following:

� The name of the file. This name must be identical to the corresponding file
name specified in your program. For programs written in assembler language
this would be the name of the DTF.

� An identification of the file, which may include generation and version numbers
of the file. This name is the one contained in the file label on the storage
device. It is associated with the file name via the DLBL statement.

� The expiration date or retention period of the file.

� The type of access method used to process the file.

� An indication of whether or not a data secured file is to be created.

� The block size (BLKSIZE) if your file is a sequential disk file and resides on a
CKD device.

� The control interval size (CISIZE) if your file is a sequential disk file and resides
on an FBA device.

A disk file can consist of one or more data areas on one or more volumes. For
each of these data areas, called extents, you supply the following information on an
EXTENT job control statement:

� The symbolic name of the device on which the volume containing the file extent
is mounted.

� The serial number of this volume.

� The type of the extent. An indexed sequential file, for instance, can consist of
data areas, index areas, and overflow areas. For each of these areas an extent
must be defined, and its type (data, index, or overflow) must be specified.

� The sequence number of the extent within the file.

54 IBM VSE/ESA Guide to System Functions

 Controlling Jobs

� For CKD devices:

The number of the track (relative to zero) on which the file extent begins.

The amount of space (in tracks) the file occupies.

� For FBA devices:

The block number on which the file extent begins.

The amount of space (in blocks) the file occupies.

Examples of Submitting Label Information for Disk Files
Here are a number of examples of how to code the job control statements required
to create or access the labels for the various types and organizations of disk files. It
is helpful if you are familiar with the formats of the DLBL and EXTENT job control
statements as described in VSE/ESA System Control Statements under “DLBL” and
“EXTENT”.

Sequentially Organized Disk Files (Single Drive, Single Volume): In the
following example, the program CREATE creates a sequential disk file named
SALES. The file comprises one extent of 190 tracks on a CKD device, starting on
relative track number 1320. The disk pack has the volume serial number 111111
and is mounted on the drive assigned to the symbolic device name SYS005:

// JOB EXAMPLE
// ASSGN SYSðð5,CKD,VOL=111111,SHR
// DLBL SALES,'ANNUAL SALES RECORDS',2ðð2/365,SD
// EXTENT SYSðð5,111111,1,ð,132ð,19ð
// EXEC CREATE
/&

The job control program checks the DLBL and EXTENT statements for correctness
and stores the supplied information in the label information area for the duration of
the job or job step.

Sequentially Organized Disk Files (Single Drive, Multivolume): Assume that a
program PROG100 needs a sequential disk file located on three different disk
volumes that are to be mounted successively on the same device (SYS005). The
file consists of four extents on a CKD device: two on the volume with serial number
000020, one on volume 000100, and one on volume 000006. The following job
stream shows the label statements required:

 Chapter 3. Controlling Jobs 55

 Controlling Jobs

// JOB SAMLABEL
// ASSGN SYSðð5,CKD,VOL=ðððð2ð,SHR

1 // DLBL FILNAME,'FILE ID',2ðð2/365,SD
// EXTENT SYSðð5,ðððð2ð,1,ð,132ð,19ð
// EXTENT SYSðð5,ðððð2ð,1,1,8ð,74ð

2 // EXTENT SYSðð5,ððð1ðð,1,2,5ð,9ð6
// EXTENT SYSðð5,ððððð6,1,3,1275,64

3 // EXEC PROG1ðð
4 /&

Explanation:

1 Only one DLBL statement is required. For each
extent one EXTENT statement must be supplied in
the sequence in which the extents are processed.

2 For the third extent, volume serial number ððð1ðð
is specified while the volume currently mounted on
SYSðð5 has the number ðððð2ð. The OPEN routine of
IOCS notifies the operator of this discrepancy,
and the operator can mount the correct volume,
at which time the OPEN routine regains control.
The same is true for the fourth extent.

3 Logical IOCS in PROG1ðð opens the first extent
using the file name and file ID in the DLBL
statement, and the logical unit and volume
serial number in the first EXTENT statement
to locate the actual label on the disk pack.
After PROG1ðð has processed the first extent,
logical IOCS opens the second extent, based
on the extent sequence number.

4 The /& statement causes the label information stor-
ed in the label information area to be cleared.
Thus, if the next job requires the same file, the
label statements must be resubmitted (see "Storing
Label Information" later in this chapter).

Sequentially Organized Disk Files (Multiple Drives): The example has the
same requirements as the preceding “Single Drive” example except that the three
volumes are mounted on three different drives. The required job control statements
are as follows:

// JOB SAMLABEL
// ASSGN SYSðð5,DISK,VOL=ðððð2ð,SHR
// ASSGN SYSðð6,DISK,VOL=ððð1ðð,SHR
// ASSGN SYSðð7,DISK,VOL=ððððð6,SHR

1 // DLBL FILNAME,'FILE ID',2ðð2/365,SD
// EXTENT SYSðð5,ðððð2ð,1,ð,1ð,2ð1ð
// EXTENT SYSðð5,ðððð2ð,1,1,4ððð,151ð
// EXTENT SYSðð6,ððð1ðð,1,2,64,13ðð
// EXTENT SYSðð7,ððððð6,1,3,5ð,636

2 // EXEC PROG1ðð
 /&

56 IBM VSE/ESA Guide to System Functions

 Controlling Jobs

Explanation:

1 All label statements submitted are identical
to the 'Single Drive' example except for SYSnnn
in the EXTENT statements.

2 Logical IOCS opens each extent in the same
way as described in the 'Single Drive'
example except that processing does not
stop for removal and mounting of packs,
because enough devices are online to contain
the file. A combination of this and the
'Single Drive' example could be used to
reduce handling time without excessively
increasing the total drive requirements.

Direct Access Files: The program PROG101 processes a direct access file
consisting of four extents contained on three FBA devices. The three devices must
be ready at the same time. The following job stream shows the label statements
required to process the file:

// JOB DALABEL
// ASSGN SYSðð5,DISK,VOL=ðððð65,SHR
// ASSGN SYSðð6,DISK,VOL=ðððð25,SHR
// ASSGN SYSðð7,DISK,VOL=ððððð2,SHR

1 // DLBL FILNAME,'FILE ID',2ðð2/365,DA
// EXTENT SYSðð5,ðððð65,1,ð,1ð,2ð1ð
// EXTENT SYSðð5,ðððð65,1,1,4ððð,151ð
// EXTENT SYSðð6,ðððð25,1,2,64,13ðð
// EXTENT SYSðð7,ððððð2,1,3,5ð,636
// EXEC PROG1ð1

 /&

Explanation:

1 The label statements follow the same pattern
as for sequential files (described in the
preceding examples) except that the DLBL
statement must specify DA to indicate direct

 access.

As mentioned before, label information is stored by the system in the label
information area which is described under “Storing Label Information” on page 59.

Label Information for Files on Magnetic Tape
Files on magnetic tape can be processed with or without labels. For tape files with
IBM standard labels, the label information must be submitted through the TLBL job
control statement. (A tape file can also have standard-user or non-standard labels;
for these labels no job control statements are required).

The standard label information submitted in the TLBL statement may include the
following:

� The name of the file. This name must be identical to the corresponding
filename (DTF name) specified in your program.

� An identification of the file.
� Creation date for input and expiration date (or retention period) for output files.

 Chapter 3. Controlling Jobs 57

 Controlling Jobs

� The volume serial number of the tape reel that contains the file.
� For files that extend over more than one volume, the sequence number of the

volume.
� For volumes that contain more than one file, sequence number of the file.
� The version and modification number of the file.

As with disk and diskette files, the label information you supply in the TLBL job
control statement is checked and stored in the label information area. Refer also to
“Storing Label Information” on page 59.

Following is an example of job control statements for label checking of a file on
magnetic tape:

// JOB UPDATE
// ASSGN SYSðð7,ððC
// ASSGN SYSðð8,28ð
\ PLEASE MOUNT CURRENT ACCOUNTS RECEIVABLE TAPE
// PAUSE
// TLBL ACCT,'ACCTS.REC.FILE'
// EXEC UPDATE
 ...
 data cards
 ...
/\
// MTC REW,SYSðð8
// ASSGN SYSð1ð,28ð
// ASSGN SYSðð7,ððE
// TLBL ARFILE,'ACCTS.REC.FILE'
// EXEC ARREPORT
/&

Figure 29. Sample Job for Label Checking of a File on Magnetic Tape

The programs UPDATE and ARREPORT access the same file 'ACCTS.REC.FILE',
yet they use different file names and different programmer logical units.

UPDATE opens a file named ACCT on logical unit SYS008 and ARREPORT opens
a file named ARFILE on SYS010. In both cases, the file accessed is
'ACCTS.REC.FILE'. If the two programs had used the same file name and
programmer logical units, one ASSGN statement and one // TLBL statement
permanently stored in the label information area would have been sufficient.

Label Information for Files on Diskette Devices
After you have informed the system, via the ASSGN statement or command, on
which device the file resides, you must supply the following information to allow the
creation (output files) or checking (input files) of diskette labels:

1. A description of the characteristics of the file. You specify this in the DLBL job
control statement.

2. The volume(s) the file is contained on. You specify this in one or more EXTENT
job control statements.

The label information you supply in the DLBL job control statement may include the
following:

58 IBM VSE/ESA Guide to System Functions

 Controlling Jobs

� The name of the file. This name must be identical to the corresponding file
name specified in your program. For programs written in assembler language,
this would be the name of the DTF.

� An identification of the file. This name is the one contained in the file label on
the diskette. It is associated with the file name via the DLBL statement.

� The expiration date or retention period of the file.

� The type of access method used to process the file; always coded as DU.

A diskette file consists of a data area on one or more volumes; each volume
contains only one data area for a particular file. For each of these data areas,
called extents, you must supply the following information on an EXTENT job control
statement:

� The symbolic name of the device on which the volume containing the file is
mounted.

� The serial number of the volume.

� The type of extent; always coded as 1.

In the following example, the program CREATE creates a diskette (DU) file named
SALES that has a file-id of MONTHLY and is to be retained for 30 days. The file
comprises up to three diskettes. The diskettes have the volume serial numbers
111111, 111112, and 111113, and are mounted on the drive assigned to the
symbolic device named SYS005.

// JOB EXAMPLE
// ASSGN SYSðð5,ð6ð
// DLBL SALES,'MONTHLY',3ð,DU
// EXTENT SYSðð5,111111,1
// EXTENT SYSðð5,111112,1
// EXTENT SYSðð5,111113,1
// EXEC CREATE
/&

The job control program checks the DLBL and EXTENT statements for correctness
and stores the supplied information in the label information area for the duration of
the job. Refer also to “Storing Label Information.”

Storing Label Information
Job control stores label information in the label information area either temporarily
(for the duration of one job or job step) or permanently. There are four label
subareas for storing the label information:

� Partition temporary subarea (temporarily stored)
� Partition standard subarea (permanently stored)
� Class standard subarea (permanently stored; dynamic partitions only)
� System standard subarea (permanently stored)

Label information stored in a partition subarea can be accessed only from the
associated partition. Label information stored in the system subarea can be
accessed from all partitions; stored in the class subarea it can be accessed from
each dynamic partition of the associated class.

The type of subarea used is controlled by the USRLABEL, PARSTD,
CLASSTD=class, and STDLABEL operands of the OPTION job control statement:

 Chapter 3. Controlling Jobs 59

 Controlling Jobs

USRLABEL Causes all label information to be stored temporarily for one job or
job step. Label information submitted between job steps overlays
the label information submitted for a preceding job step. Therefore
each job step (that is each EXEC statement) should be preceded by
the label information statements it requires. For example, in
Figure 29 on page 58 both job steps UPDATE and ARREPORT
are preceded by a TLBL statement. Note that the label information
for file ACCT is not available for the second job step (ARREPORT).

The label information is written temporarily into the subarea of the
associated partition.

If no option is specified, or if the OPTION statement is omitted,
USRLABEL is assumed.

PARSTD Causes label information to be stored permanently for all
subsequent jobs in the same partition. The label information is
written to the partition standard subarea.

Partition standard labels can be submitted in the partition to which
they belong. For foreground partitions they can also be submitted
through a job running in the background partition. The job stream
must contain one of the following statements:

// OPTION PARSTD=Fn
// OPTION PARSTD=(Fn,ADD)

All label information following this statement is put into the partition
standard subarea of partition Fn (n is the number of the foreground
partition). The above statement can be given only when partition Fn
is inactive.

CLASSTD=class
For dynamic partitions only.

Causes label information to be stored permanently for all
subsequent jobs in any dynamic partition of class 'class'. The label
information is written to the class standard subarea. Class standard
labels can be submitted from the BG partition only. The job running
in BG must contain one of the following statements:

// OPTION CLASSTD=class
// OPTION CLASSTD=(class,ADD)

All label information following this statement is written into the class
standard subarea of class 'class'. The above statement can be
given only if the stated 'class' is disabled and no partition of this
'class' is active.

STDLABEL Causes label information to be stored permanently for all
subsequent jobs in any partition. The label information is written to
the system standard subarea and can be submitted only in the
background partition.

For details of the OPTION statement, refer to the manual VSE/ESA System Control
Statements under “OPTION”.

Terminate your // OPTION PARSTD, // OPTION STDLABEL, or // OPTION
CLASSTD=class job stream with a // OPTION USRLABEL statement. This
ensures that any subsequent label information is written only to the partition

60 IBM VSE/ESA Guide to System Functions

 Controlling Jobs

temporary subarea, and does not fill up the standard label subareas (system,
partition, class). The OPTION statement with USRLABEL specified also indicates to
the system that no further partition or system standard labels will follow; a /&,
// JOB, or // EXEC statement has the same effect.

Adding and Deleting Label Information
When PARSTD, CLASSTD or STDLABEL is given without the specification ADD or
DELETE, any label information currently in the respective subarea is completely
overwritten by the newly supplied data. If you want to keep the old label information
and only add more labels to it, code one of the following:

// OPTION PARSTD=ADD
// OPTION STDLABEL=ADD
// OPTION PARSTD=(Fn,ADD)
// OPTION CLASSTD=(class,ADD)

Specifying

// OPTION PARSTD=DELETE
// OPTION STDLABEL=DELETE
// OPTION PARSTD=(Fn,DELETE)
// OPTION CLASSTD=(class,DELETE)

causes labels to be deleted from the respective subarea. Such a statement must be
followed by one or more statements of the form

 filename

where filename (of the DLBL statement) indicates which label is to be deleted. The
last filename statement must be followed by a /*. A DELETE operation is somewhat
time-consuming because the label is physically deleted from the label area, and the
label area space is condensed each time a DELETE request is processed.

Label Information Search Order
During program execution, the data management routines search the label
information area in the sequence outlined below.

� For a static partition the search sequence is as follows:

1. Partition temporary subarea for user labels (USRLABEL).

2. Partition standard subarea for partition standard labels (PARSTD).

3. System standard subarea for system standard labels (STDLABEL).

This sequence also applies for a dynamic partition if the PARSTD option is
used.

� If a program runs in a dynamic partition and the PARSTD option is not used,
the search sequence is as follows:

1. Partition temporary subarea for user labels (USRLABEL).

2. Partition standard subarea for class standard labels (CLASSTD).

3. System standard subarea for system standard labels (STDLABEL).

The summary of label options given in Figure 30 indicates the conditions under
which a label option remains in effect and the conditions that govern the retention
of the label data in the label information area.

 Chapter 3. Controlling Jobs 61

 Controlling Jobs

Figure 30. Summary of Label Option Functions

Option in
search
sequence

Type of
label
information

Option in effect until Label information
retained

For

USRLABEL temporary STDLABEL, PARSTD,
or CLASSTD is
specified

for one job or job
step. The /&
statement causes the
temporary label area
to be cleared.
Additional label
information from a
subsequent job step
will overlay previous
label information.

the partition in
which the option
was specified.

PARSTD permanent � end-of-job step

� end of job

 � USRLABEL,
STDLABEL, or
CLASSTD is
specified

for all subsequent
jobs until deleted. (1)

the partition in
which the option
was specified, or
as specified in
PARSTD=Fn.

CLASSTD=class permanent � end-of-job step

 � end-of-job

 � USRLABEL,
PARSTD, or
STDLABEL is
specified

for all subsequent
jobs until deleted. (1)

dynamic partitions
of a class

STDLABEL permanent � end-of-job step

� end of job

 � USRLABEL,
PARSTD, or
CLASSTD is
specified

for all subsequent
jobs until deleted. (1)

all partitions

(1) Either explicitly deleted (=DELETE) or by giving the option without an operand.

Stored label information may be displayed using program LSERV as follows:

 // JOB
// EXEC LSERV

 /\
 /&

If you specify no parameter, all labels are displayed or printed. For a description of
the parameters available, refer to the manual VSE/ESA System Utilities under
“Displaying the Label Information Area”.

Controlling Magnetic Tape
Note: The term magnetic tape in this context means both, tapes and cartridges.

The MTC job control statement or command controls operations such as:

� Spacing the tape backward or forward to the required file.

62 IBM VSE/ESA Guide to System Functions

 Controlling Jobs

� Spacing the tape backward or forward a specified number of physical records.

� Rewinding the tape to the beginning.

� Writing a tapemark to indicate the end of a file.

In the following example, program PROGA creates a labeled tape file named
RATES on tape volume 222222. At the end of the first job step, an MTC job control
statement requests the system to rewind (REW) the tape to the beginning of the
volume so that the newly created file can be processed by PROGB. After PROGB,
the tape is rewound and unloaded (RUN).

// JOB TAPE
// ASSGN SYSðð4,TAPE,VOL=222222
// TLBL RATES,'MASTER',2ðð2/365,222222
// EXEC PROGA
// MTC REW,SYSðð4
// EXEC PROGB
// MTC RUN,SYSðð4

 /&

For details of the operations which can be carried out by the MTC statement or
command, refer to the manual VSE/ESA System Control Statements under “MTC”.

Controlling Printed Output
Most of the printers use a forms control buffer (FCB) to control the skipping of
forms. In addition, printers may have a universal character set buffer (UCB).
Examples of printers equipped with both of these buffers are the 3203 and 3211
printers.

The buffers of these printers must be loaded during or immediately after IPL, and
they may have to be reloaded later between job steps or, occasionally, while a job
step using the printer is being executed.

Following is a description of the methods available for loading the buffers.

Loading the FCB

� Automatic loading during IPL
� Using the SYSBUFLD program between job steps or immediately after IPL
� Using the LFCB command
� Using the LFCB macro in the problem program
� Using the FCB parameter in the VSE/POWER * $$ LST statement.

Loading the UCB

� Automatic loading during IPL (applies to PRT1 printers)
� Using the SYSBUFLD program between job steps or immediately after IPL
� Using the LUCB command
� Using the UCS command (applies only to a 1403U printer).

Using the SYSBUFLD program offers the advantage that hardly any operator
activity is involved; on the other hand, loading the buffers by using the LFCB or
LUCB command does not require the operator to wait for a partition to finish
processing.

 Chapter 3. Controlling Jobs 63

 Controlling Jobs

When the contents of an FCB or a UCB are replaced by a new buffer image, the
system uses this new image to control printed output until the buffer is reloaded or
until the next IPL.

None of the above methods provides automatic resetting of the buffer load to the
original contents. However, if you use the FCB parameter in the VSE/POWER
statement * $$ LST, the FCB is automatically reset during processing of the
* $$ EOJ statement. For more information on loading the FCB under
VSE/POWER, see the VSE/POWER documentation.

It may be necessary to reset the buffer to the original contents before taking a
storage dump, to ensure that the dump is printed in the correct format, without any
part of it being left out.

Details on how to load the FCB and UCB are contained in the manual VSE/ESA
System Control Statements under “LFCB”, “FCB”, as well as under “LUCB” and
“UCB”.

Controlling Printed Output on an IBM 3800 Printing Subsystem
The IBM 3800 Printing Subsystem uses an electrophotographic technique with a
low-powered laser to print output. It provides more features than current impact
printers.

The following methods of controlling the IBM 3800 are available:

� The SETDF attention routine command, which allows the operator to set and/or
reset default control values for the IBM 3800. A SETDF command can set
default control values for:

– One character arrangement table

– The forms control buffer

 – Copy modification

– Paper forms identification

– The forms overlay name

– Bursting and trimming or continuous forms stacking.

� The SETPRT job control statement or command, which allows you to override
the current default control values for the duration of one job. At the end of the
job, these values are reset to those specified in the last SETDF command, or
to the hardware defaults if SETDF was not specified.

Refer to “SETDF” and “SETPRT” in VSE/ESA System Control Statements for a
detailed description of SETDF and SETPRT.

Processing a Program
Three job steps are necessary to obtain output from an application program once
the source program has been written:

1. Assembling or compiling of the source program into an object module.

Object modules are discussed in Chapter 5, “Linking Programs” on page 181.

64 IBM VSE/ESA Guide to System Functions

 Controlling Jobs

2. Link-editing of the object module to form an executable program, also called a
phase.

3. Running the program.

Each of these steps is initiated by the job control program in response to an EXEC
job control statement, which must be the last job control statement submitted for a
job step. Figure 31 gives an example of the job control statements needed to
assemble, link edit, and process a source program. The example assumes that
ASSGN statements for the assembler work files have been given in the partition.

// JOB INPUT
// OPTION LINK
// EXEC ASMA9ð.....
 .
 .
source program
 .
 .
/\
// EXEC LNKEDT
// EXEC
 .
 .
input data for user program
 .
 .
/\
/&

Figure 31. Job Control Statements to Assemble, Link-Edit, and Execute a Program in one
Job Stream

The statement // EXEC ASMA9ð.... calls the High Level Assembler. Refer to “High
Level Assembler Considerations” on page 174 for further details.

IBM language translators (and many other IBM programs) read their input from
SYSIPT. If SYSRDR and SYSIPT are assigned to the same device, the source
statements of your program must follow the corresponding EXEC job control
statement. In this example, the assembler language statements would have to
follow the // EXEC ASMA90.... statement. The end of the input data submitted for
one program must be indicated by a /* (end-of-data) statement.

Note: How the job shown in Figure 31 is processed by the system is explained by
Figure 32 on page 66.

Instead of submitting three EXEC statements, you may invoke all three steps by
one EXEC statement. Specifying the GO parameter in the EXEC statement which
invokes the assembler (compiler) causes the linkage editor and your executable
program to be run automatically once the assembly (compilation) is finished. The
source program and any additional data required by your program must be
submitted via SYSIPT.

This method is useful during the testing of a new program.

 Chapter 3. Controlling Jobs 65

 Controlling Jobs

Figure 32. Sample of a Job to Assemble, Link-Edit and Execute a Program

Control
Statement or
Data

Program in
Control

Function

// JOB INPUT Job Control Stores the specified job name, INPUT.

// OPTION LINK Job Control Sets the LINK bit to indicate:

� that link-editing is allowed in this job.

� that the High Level Assembler makes the assembled object
module available as input on SYSLNK for the linkage editor.

� that the linkage editor is to store the executable program
temporarily for execution in the same job.

// EXEC
ASMA90....

Job Control

Supervisor

Passes job information such as the program name to the super-
visor and transfers control to it.
Loads the High Level Assembler which replaces job control in
the partition.

...
source program
...

High Level
Assembler

Reads the source program (from SYSIPT, which is assigned to
the same device as SYSDR -- see Note, below), assembles it,
and stores the object module on disk (SYSLNK) -- as input for
the linkage editor.

/* Supervisor

Supervisor

High Level Assembler signals end-of-file to supervisor when a
/* occurs.
Loads job control, which replaces the High Level Assembler in
the partition.

// EXEC LNKEDT Job Control

Supervisor

Linkage Editor

Supervisor

Passes LNKEDT, the program name of the linkage editor, to
the supervisor and transfers control to the latter.
Loads the linkage editor, which replaces job control.

� Reads and processes the object module generated and
stored on SYSLNK by the High Level Assembler.

� Stores the executable program phase in the virtual I/O area.

� Transfers control to the supervisor.

Loads job control, which replaces the linkage editor.

// EXEC Job Control

Supervisor

� Passes NONAME to the supervisor because no name is
specified in the // EXEC statement.

� Transfers control to the supervisor.

Loads the program last stored temporarily (in virtual I/O area) by
the linkage editor; this program replaces job control.

...
input data for user-
written program
...

User
Program

Reads and processes the input data from SYSIPT.

/* Supervisor
Supervisor

User program signals to supervisor end-of-file when a /* occurs.
Loads job control, which replaces the unnamed user program.

/& Job Control Turns off the LINK bit.
Reads the next statement from the device assigned to SYSRDR.

NOTE: The High Level Assembler, like any other IBM language translator, reads its control input from
the device assigned to SYSIPT.

66 IBM VSE/ESA Guide to System Functions

 Controlling Jobs

Executing Cataloged Programs
Assembly or compilation, linking and execution in one job or in one GO step is
possible only with single-phase programs.

Multiphase programs must be cataloged permanently in a sublibrary after they have
been assembled and link edited. This method also saves assembling and link
editing a program for every run. It can, of course, be used for single-phase
programs, too.

The linkage editor catalogs programs as PHASE-type members in a sublibrary.
This is discussed in detail in Chapter 5, “Linking Programs” on page 181.

To execute a cataloged program you use a LIBDEF PHASE,SEARCH... statement
to specify in which sublibrary the program was cataloged, and an EXEC job control
statement specifying the name under which the program was cataloged. For
example, the job below executes a program that was cataloged in a sublibrary
under the name PROGA; data cards are submitted on SYSIPT:

// JOB USERPROG
 ...

(ASSGN, LIBDEF, and label
statements as required,
if not permanently valid
in the partition)

 ...
// EXEC PROGA

 ...
 input data
 ...
 /\
 /&

Defining Options for Program Execution
A complete list of the available options is given in the manual VSE/ESA System
Control Statements under “OPTION”.

In the preceding section, it was shown how the OPTION job control statement can
be used to specify the type of label information to be stored for a file (options
USRLABEL, PARSTD, CLASSTD, and STDLABEL) and to define whether a
program is to be link edited (LINK option).

There are a number of additional system functions which you can invoke through
the OPTION job control statement. The most important ones are:

// OPTION CATAL
Causes the linkage editor to catalog a phase into the sublibrary specified in the
current LIBDEF PHASE,CATALOG... statement. Causes also the setting of the
LINK option.

// OPTION LOG
Logs all job control statements submitted to the system on SYSLST. This makes it
easier to find errors in the job control statements.

 Chapter 3. Controlling Jobs 67

 Controlling Jobs

// OPTION PARTDUMP
Dumps the contents of the registers, a formatted portion of the supervisor area, and
the current partition on SYSLST in case of abnormal program termination.

// OPTION DUMP
Dumps the same information as is dumped by the PARTDUMP option, but provides
an unformatted dump of the entire supervisor instead of just a formatted portion of
it.

// OPTION DECK
Causes the assembler (compiler) to write an object module to SYSPCH. The object
module can then be combined with other object modules by the linkage editor to
form one executable program, or it can be used as input to the librarian program to
catalog it into a sublibrary.

// OPTION LIST, LISTX, SYM, XREF, ERRS
Prints various listings produced by the language translators (compilers) on
SYSLST. These listings include object code, symbol table, cross-reference, and
error lists which are useful debugging aids during the test period of a program.
SXREF may be specified instead of XREF to obtain a cross reference listing that
includes only the referenced labels in the assembled program. Some of these
options can be suppressed by specifying the prefix NO (for example, NOLIST,
NODUMP).

Options may be set permanently using the STDOPT (standard option) command.
Specified standard options become effective after the next /& statement or JOB
statement.

Permanent (STDOPT) options are valid for all jobs unless overridden by an
OPTION job control statement. Options specified in an OPTION statement remain
in effect until

� A contrary option is specified, or

� A JOB or /& statement is encountered which resets the options to the
permanent values.

You may display permanent and temporary options by means of the QUERY
STDOPT and QUERY OPTION commands.

Communicating with Application Programs via Job Control

Program Switches (UPSI)
You can cause a program to take a specific path of action by setting program
switches that can be tested by that program when it is executed.

You can set these program switches, called UPSI (user program switch indicator),
“on” (1) or “off” (0) using the UPSI job control statement. The specific meaning
attached to each bit in the UPSI byte depends on the design of the program. The
statement

// UPSI 10000110

68 IBM VSE/ESA Guide to System Functions

 Controlling Jobs

for example, sets bits 0, 5, and 6 of the UPSI byte to 1, and bits 1, 2, 3, 4, and 7 to
zero. A program can inspect these switches and take a specific path based on their
setting.

Passing a Parameter
Another way of passing information to a program before it starts execution is by
way of the EXEC statement.

PARM parameters are useful, for example, in an accounting application that
prepares reports of daily, weekly, and monthly accounts. Using the parameter, you
can inform the application program when the daily, weekly, or monthly reports are
due. In the PARM parameter, you may specify up to 100 bytes of information,
enclosed by single quotes. The PARM parameter may be specified up to three
times thus allowing for a string in storage of up to 300 bytes. The following two
statements are equivalent:

// EXEC PROGA,SIZE=PROGA,PARM='TUESDAY WEDNESDAY'
// EXEC PROGA,SIZE=PROGA,PARM='TUESDAY',PARM=' WEDNESDAY'

When the problem program receives control, register 1 points to a fullword in virtual
storage. This fullword has the following layout:

Byte 0 Reserved. Bit 0 is an indicator:

1= length of PARM value greater than 0

0= length of PARM value equal 0

Byte 1-3 Address

The high-order bit of the fullword indicates whether the PARM value is a null string
or not. The rest of the high-order byte is reserved. The address in bytes 1, 2 and 3
of this fullword is that of a two-byte field containing the length of the PARM
character string. The PARM character string itself starts at an offset of 2 from this
address.

To test whether a PARM value has been passed, compare registers 1 and 15. If
their contents are equal, a PARM value was not specified.

The PARM value is stored in the system GETVIS area.

Executing in Virtual or Real Mode
All programs invoked for execution through an EXEC job control statement are
normally executed in virtual mode. If there is a need to run a program in real mode,
you specify the REAL operand in the EXEC statement.

Example:

// JOB NAME
 ...

additional job control statements
 ...
// EXEC PROGA,REAL

 /&

 Chapter 3. Controlling Jobs 69

 Controlling Jobs

If, for the above example, this job is submitted in partition F8, then there must be
enough processor storage allocated to the F8 partition by an ALLOC R command
to hold the entire program PROGA.

If a program executing in real mode needs a real GETVIS area, use the SIZE
operand of the EXEC statement. For example:

// EXEC PROGA,REAL,SIZE=32K

Assuming that the F8 partition has 52KB of processor storage allocated then the
remaining 20KB of that partition are available to the program for dynamic allocation
by a GETVIS macro request, which is discussed later in this chapter.

If you specify SIZE=AUTO or SIZE=phasename, job control automatically uses the
information in the program's sublibrary directory entry to calculate the size of the
program that is to be loaded. SIZE=AUTO requests the system to take the size
from the largest phase of the program. With SIZE=phasename, the actual size of
the named phase is used.

With a few exceptions, all IBM-supplied and user-written programs can be executed
in virtual mode. The exceptions are:

� The IBM-supplied program OLTEP (Online Test Executive Program).

� User-written programs if they contain channel programs for devices that are not
supported by VSE/ESA.

� User-written programs if they

– contain routines with time-dependent code for execution of I/O requests.

– contain channel programs that are modified during command execution.

– contain I/O appendage routines causing page faults.

A program may request additional storage from the partition GETVIS area (this
area is described in the following section, “Dynamic Allocation of Storage”). During
real mode execution, this storage is obtained from the allocated processor storage
which remains after the SIZE operand of the EXEC statement has been processed.
The size of the real GETVIS area equals the size specified in the ALLOC R
command minus the size specified in the SIZE operand of the EXEC statement.
Specifying a SIZE value, therefore, allows you to issue GETVIS requests from a
program running in real mode (contrary to execution in virtual mode, a default
partition GETVIS area is not provided for real mode execution). For a program that
is executed in real mode, allow 16K per open file, and allow additional processor
storage if double buffering is used or if FBA files with large CI-sizes or VSE/VSAM
files are opened. For most IBM-supplied programs that must run real, an allocation
of 48K for GETVIS requests is sufficient.

Note that the FREEVIS macro releases GETVIS space which was obtained through
a GETVIS macro; that space is again available for subsequent GETVIS requests.
When issued from a program running in real mode, however, the space is not
returned to the page pool until the execution of the particular job is finished.

70 IBM VSE/ESA Guide to System Functions

 Controlling Jobs

Allocation of Partition GETVIS Storage
GETVIS areas are dynamic storage areas and are part of a static or dynamic
address space as described under “GETVIS Areas” on page 10.

Each partition (static and dynamic) has an area called the partition GETVIS area.
The minimum and default partition GETVIS area for a partition is 48KB. If a
partition extends beyond 16MB, the partition GETVIS area has a minimum (and
default) size of 48KB plus the partition area that extends beyond 16MB. The default
of 48KB is not applicable to real mode execution; in this case, you have to reserve
storage yourself (as described in the preceding section).

The partition GETVIS area is also used by certain system components for functions
such as opening files or processing labels. When you no longer need the area
acquired by a GETVIS macro release it with a FREEVIS macro. For details about
using these macros, refer to the manual VSE/ESA System Macro Reference under
“GETVIS Macro” and “FREEVIS Macro”.

Figure 33 shows the virtual storage layout of a 440KB partition with a partition
GETVIS area of 48KB.

Figure 33. Storage Layout of a Partition with Default GETVIS Area

You may increase the size of a partition GETVIS area through

� the SIZE job control or attention routine command (static partitions only), or

� the SIZE parameter of the job control EXEC statement (static and dynamic
partitions).

For further details, refer also to “Considerations for Dynamic Partitions” on
page 72.

With the SIZE command or parameter, you specify the amount of virtual storage
available for program execution in a given partition. The balance of that partition's
allocation is the partition GETVIS area. Given a SIZE of 380KB, the result is a
storage layout for the partition as shown in Figure 34 on page 72.

 Chapter 3. Controlling Jobs 71

 Controlling Jobs

Figure 34. Storage Layout of a Partition after a SIZE Command was Given

The boundaries set by the SIZE command are valid until next IPL, or until another
SIZE command is given, or until a partition allocation/deallocation takes place.

You may temporarily alter the partition GETVIS area by using the SIZE operand (as
shown in Figure 35 with a value of 360KB) on the job control EXEC statement
(also for dynamic partitions). The SIZE operand establishes boundaries in the same
way as the SIZE command, except that the operand value holds only for one job
step. At the end of the job step, the GETVIS size is set to the system default of
48KB or to the previously established permanent value.

Figure 35. Program Execution with the SIZE Operand

Considerations for Dynamic Partitions
The SIZE command is not allowed for dynamic partitions. The permanent SIZE for
dynamic partitions must be specified in the dynamic class table. Refer to the
manual VSE/ESA Planning for details about the dynamic class table parameters.

An EXEC statement with the SIZE operand works for a dynamic partition in the
same way as for a static partition.

72 IBM VSE/ESA Guide to System Functions

 Controlling Jobs

Handling of System Input and Output
I/O devices (except disk devices) cannot be assigned to more than one partition at
the same time. Using just one card reader for reading in jobs, for example, can
lead to bottlenecks. The SYSRDR or SYSIPT job stream for one partition must be
processed completely and the card unit unassigned before input for another
partition can be read in. This also applies accordingly to the system output on
SYSLST and SYSPCH if only one printer and one card punch are available.

Since this situation can cause a considerable decrease of system throughput, you
may consider storing the input job streams and the system output on disk. This
allows several partitions to read system input from or write system output to disk
simultaneously. As a disk is a high-speed device, this increases system throughput.

VSE/POWER, a component of VSE/ESA, is available for this kind of input and
output spooling. The spooling program stores the job streams on disk, transfers the
jobs to the partitions for execution, and stores list and punch output on disk before
it is finally printed or punched.

The devices used by dynamic partitions must be spooled by VSE/POWER.

System Files on Tape
If the system input units SYSRDR and SYSIPT are assigned to the same magnetic
tape unit, they may (but need not) be referred to as SYSIN. If the system output
units SYSLST and SYSPCH are assigned to the same magnetic tape they must be
referred to as SYSOUT. If SYSLST or SYSPCH is assigned to a standard label
tape and no new label information is supplied, the old labels will remain on the
tape. SYSIPT and/or SYSRDR cannot be assigned to a multivolume tape file.

To store an input stream on magnetic tape you must write your own program that
transfers this job stream to the tape. Assume, in the following example given in
Figure 36 on page 74, that you have written such a program and cataloged it in a
sublibrary under the name CDTAPE.

 Chapter 3. Controlling Jobs 73

 Controlling Jobs

// JOB BUILDIN
(1) // ASSGN SYSðð4,ððC
(2) // ASSGN SYSðð5,182
(3) // EXEC CDTAPE

// JOB A
 .
 .
 /&

// JOB B
 .
 .
 /&
 (4) \\
 /&

1. SYS004 is assigned to the card reader from which CDTAPE reads the job
stream. The statements JOB BUILDIN through EXEC CDTAPE are read from
00C (SYSRDR).

2. SYS005 is assigned to the tape which is to receive the job stream.

3. The CDTAPE program is executed and reads the job stream (JOB A and JOB
B) from SYS004 and writes it onto tape.

4. ** As defined in program CDTAPE to signal end of file on SYS004.

Figure 36. Creation of SYSIN on Tape

After completion of the job BUILDIN shown in Figure 36 you can assign SYSIN to
the tape containing the job stream; job control will then read and process the jobs A
and B from the tape just as it would have done from the card reader.

In the same way you can direct the system output on SYSLST and SYSPCH to go
on magnetic tape and then use your own or an IBM-supplied program to print or
punch the contents of the tape on the printer or card punch, respectively.

After a system file on tape has been processed, it is recommended to use a
CLOSE job control command (no //). This causes a tapemark to be written after the
file. The second (optional) operand of the CLOSE command can be used to
unassign a system logical unit or reassign it to another device. The following
command closes the SYSIN file on tape and reassigns SYSIN to the card reader at
address 00C:

CLOSE SYSIN,C

The CLOSE command can either be entered on SYSLOG or can be included at the
end of the job stream on tape.

System Files on Disk
When both SYSRDR and SYSIPT are assigned to the same disk, they must refer
to the same disk extent, and must be assigned as SYSIN. SYSOUT cannot be
used if SYSLST and SYSPCH are assigned to disk. Only single extent system files
are supported.

For system files on disk, you must provide the required label information by means
of DLBL and EXTENT job control statements. In these statements, use the
following predefined file names:

74 IBM VSE/ESA Guide to System Functions

 Controlling Jobs

IJSYSIN for SYSRDR, SYSIPT, SYSIN
IJSYSPH for SYSPCH
IJSYSLS for SYSLST

The assignment of a system file to a disk extent must always be permanent, and it
must follow the DLBL and EXTENT statement.

Example for a SYSIN assignment to a CKD type disk device:

// DLBL IJSYSIN,'DISKINFILE'
// EXTENT SYSIN,123456,1,ð,126ð,3ð
 ASSGN SYSIN,131

After a system file on disk has been processed, it must be closed by a CLOSE job
control command (no //). The second (optional) operand of the CLOSE command
can be used to unassign a system logical unit or reassign it to another device. The
CLOSE command can either be entered on SYSLOG by the operator or it can be
included at the end of the job stream on disk. The following command closes a
SYSIN file on disk and reassigns SYSIN to the device at address 00C:

 CLOSE SYSIN,ððC

If SYSIPT is assigned to a disk extent, the CLOSE command must precede the /&
statement. Multiple SYSIPT data files can be read via multiple job steps with one /&
at the end of the job stream.

If an FBA disk device is to be used, you should be aware that the DTFSD support
for system files on disk is limited to sequential GET or PUT for fixed unblocked
records. (That is, the UPDATE=YES parameter is not supported.)

System Files on Diskette
Note: System files on diskette are supported for static but not for dynamic

partitions.

If the system input units SYSRDR and SYSIPT are assigned to a diskette extent,
they must be referred to as SYSIN. SYSOUT cannot be used if SYSLST and
SYSPCH are assigned to diskette.

For system files on diskette, you must provide the required label information by
means of DLBL and EXTENT job control statements. In those statements, use the
following predefined file names:

IJSYSIN for SYSRDR, SYSIPT, SYSIN
IJSYSPH for SYSPCH
IJSYSLS for SYSLST

The assignment of a system file to a diskette extent must always be permanent,
and it must follow the DLBL and EXTENT statement.

Example of a SYSIN assignment to a diskette unit:

// DLBL IJSYSIN,'DISKETTE',,DU
// EXTENT SYSIN,DSKETE,1
 ASSGN SYSIN,ð6ð

After a system file on diskette has been processed, it must be closed by a CLOSE
job control command (no //). The second (optional) operand of the CLOSE
command can be used to unassign a system logical unit or reassign it to another

 Chapter 3. Controlling Jobs 75

 Controlling Jobs

device. The CLOSE command can either be entered on SYSLOG by the operator
or it can be included at the end of the job stream on diskette. The following
command closes a SYSIN file on diskette and reassigns SYSIN to the device at
address 00C.

 CLOSE SYSIN,ððC

If SYSIPT is assigned to an IBM 3540 diskette, the CLOSE command must
precede the /& statement. Multiple input data files can be read via multiple job
steps with one /& at the end of the job stream.

Note: When closing a system file on diskette, it is necessary that the required
label information is available in the partition or system standard label area.
Using temporary label information causes an error message.

Record Formats of System Files
SYSLST records are 121 characters and SYSPCH records 81 characters long.
From SYSRDR and SYSIPT, job control accepts either 80- or 81-character records.

The first character of the SYSLST and SYSPCH records is assumed to be an ASA
carriage control or stacker selection character, respectively.

Using Conditional Job Control
By using conditional job control you can increase considerably the flexibility of jobs.
It allows either skipping or execution of subsequent parts of the job, based on the
return codes passed to job control by programs, or when abnormal termination
occurs or the job is canceled.

In addition, you may set parameters within a job. A parameter may be a character
string or a predefined return code, and can be checked during processing of the job
to make decisions on skipping or executing particular job control statements.

In application programs in Assembler language, you can set return codes. These
may range from 0 to 4095, and you may choose your own return codes. If you set
a return code higher than 4095, it is treated as if it were 4095. There are several
return codes used by IBM programs, such as the linkage editor, which have a
standard meaning. These meanings are shown in Figure 37.

Return Code Meaning

 0 The requested function has been executed successfully.

 4 A problem has been encountered, but it was possible to continue
and complete the function.

 8 The requested function has been completed, but major parts were
bypassed.

12 The requested function could not be performed.

16 A severe error occurred and the step was terminated.

If the job control program receives a return code greater than or equal to 16, it
terminates the job unless an ON statement, specifying a different action for this
return code, has been given.

Figure 37. Standard Return Codes for Conditional Job Control

76 IBM VSE/ESA Guide to System Functions

 Controlling Jobs

Thus, when using the linkage editor, you can make further processing of the job
dependent on the return codes provided by the linkage editor.

To use conditional job control, a program has to pass a return code in register 15
when returning control to the system at end of processing. This may be done in
one of two ways:

1. When the system loads a program for execution it provides the return address
in register 14. If the program returns control to the system via this address, the
system considers the contents of register 15 as a return code.

Passing the return code in this way requires the program to save the return
address of register 14 for returning control to the system and load register 15
with the return code at the end of processing.

Bytes 0 and 1 of register 15 are not part of the return code. However, bit 0 is
used to indicate whether a dump is required or not. If bit 0 is off, job control
passes control to the supervisor via the EOJ macro; if it is on, via the DUMP
macro.

2. The return code can also be passed via an EOJ or DUMP macro issued
directly by the program being processed. The program or main task which
issues an EOJ macro indicates to the system that the job step is finished. A
DUMP macro causes the system to terminate the job step and to produce a
dump which is either printed on SYSLST or stored in the dump sublibrary.

The return code can be specified directly with the macro or provided in a
register with a corresponding indication in the macro specification. If a register
is used, Register 15 is recommended. If the indication is omitted, a return code
of zero is assumed. If a subtask issues a DUMP or EOJ macro with a return
code, this return code is ignored.

The return codes passed to job control are tested by IF or ON statements. These
statements are shortly described in the following paragraphs, together with the
other statements provided for conditional job control. For a complete description
and the syntax of each statement refer to the manual VSE/ESA System Control
Statements .

Statements for Conditional Job Control
To build jobs that take advantage of conditional job control, the following
statements are provided:

 � ON statement

 � IF statement

 � SETPARM statement

 � GOTO statement

 � LABEL statement

 ON Statement
The ON statement is valid for the rest of the job. It specifies a condition which may
arise, and the action to be taken when it arises. The condition is checked after
each job step following the ON statement. An ON statement may look as follows:

ON $RC>3ð OR $ABEND GOTO ERR1ð

 Chapter 3. Controlling Jobs 77

 Controlling Jobs

This statement causes a skip to label ERR10 if the return code is greater 30 or an
abnormal termination occurs. The following default ON conditions are in effect
whenever a job is started:

ON $RC<16 CONTINUE
ON $RC>=16 GOTO $EOJ
ON $CANCEL GOTO $EOJ
ON $ABEND GOTO $EOJ

$EOJ means the end-of-job statement /&. $ABEND means an abnormal
termination. $CANCEL means a job cancelation through the AR CANCEL or job
control CANCEL command.

An ON condition specified within a procedure is in effect till the end of the
procedure; an ON condition specified outside a procedure (from SYSRDR, for
example) is in effect till end-of-job. ON conditions are checked in the sequence last
in-first checked.

 IF Statement
The IF statement is valid at the point in the job where it occurs. Like the ON
statement, the IF statement specifies a condition. However, no action is specified.
The next statement or command in the job stream may be regarded as the "action".
If the condition is true, the statement following the IF is processed; if not, this
statement is skipped.

When an IF statement is entered from the console (SYSLOG), the "following
statement" is the next statement entered from SYSLOG, or, if no further statement
is entered from SYSLOG and ENTER has been pressed, the next statement from
SYSRDR. // JOB, /&, and /+ statements are processed independent of any skip
condition. IF statements may look as follows:

1. IF $RC<=8 THEN

This statement causes the following statement to be processed if the return
code is less than or equal to 8. If the return code is greater than 8, the
statement is skipped.

2. IF $MRC<=36 AND $RC<8 THEN

If no return code passed by previous job steps exceeds the maximum of 36
and the return code of the last job step is less than 8, the following statement is
executed. Otherwise, it is skipped.

3. IF PNAM=WEEK THEN

If the parameter named PNAM has been defined before as WEEK, the
following statement is executed. Otherwise, it is skipped. Such a parameter can
be set with a SETPARM statement.

 SETPARM Statement
With the SETPARM statement you can assign a value to a symbolic parameter in a
job control procedure. The value may be:

a character string,
 $RC, or
 $MRC.

78 IBM VSE/ESA Guide to System Functions

 Controlling Jobs

Whenever the symbolic parameter occurs in the job (after the SETPARM
statement), it is processed as if it were the specified string or return code. This is
called “substitution of the parameter.” For example, after the statement:

SETPARM PNAM=WEEK

the symbolic parameter &PNAM is replaced by the character string WEEK.
Specifying SETPARM RC1=$RC causes the symbolic parameter &RC1 to be
replaced by the return code of the last job step; SETPARM RC2=$MRC causes the
parameter &RC2 to be replaced by the highest return code up to this point in the
job. The parameter values can be used to modify job control statements, or they
can be checked by the IF statement.

The SETPARM statement allows you to specify symbolic parameters at different
levels. These levels determine for how long a parameter is active during job
processing.

� Symbolic parameters at level n

� Symbolic parameters at the VSE/POWER job level

� Symbolic parameters at system level

For details refer to VSE/ESA System Control Statements.

 GOTO Statement
With the GOTO statement you can skip all following statements (except // JOB, /&,
and /+ statements) up to the target label specified in the GOTO statement. For
example, when you specify:

GOTO ACCB1

processing of the job continues after the statement:

/. ACCB1

If a /+ statement is encountered during searching, the rest of the job is skipped.

You can specify $EOJ as a label, indicating that all statements up to end-of-job are
to be skipped.

If SYSLOG gets control for input (in case of an error, for example), skipping is
suspended. If a GOTO statement is entered via SYSLOG, you can directly return to
SYSRDR (by pressing ENTER) and have the GOTO statement executed. If you
enter additional statements via SYSLOG, these statements are executed and the
execution of the GOTO statement is suspended until control is given back to
SYSRDR.

 Label Statement
With the label statement you can define entry points (labels) within a job. Such a
label can be specified in a GOTO statement, or in the GOTO action operand of an
ON statement. The format of a label statement is shown below:

/. name

The name must be one to eight alphameric characters long. The first character
must be alphabetic. The two characters '/.' identify the statement as a label.

A symbolic parameter is not allowed as a label.

 Chapter 3. Controlling Jobs 79

 Controlling Jobs

The following job example shows how the IF, ON, SETPARM, GOTO and LABEL
statements are used to build a conditional job.

Assume that you have a job that performs some kind of calculations on either a
weekly or monthly basis. Five programs are involved: CALP1, CALP1A, CALP2,
CALP3, and CALERR. CALP3 is only to be performed for monthly calculations. The
execution of CALP1A and CALERR depends on the return codes passed. CALP1A
needs to know whether a weekly or monthly calculation is to be performed.

In the following example a monthly calculation is assumed:

// JOB CALCULA
(1) ON $RC>2ð GOTO CAERROR
(1) ON $RC<=2ð CONTINUE
(2) SETPARM PNAM=MONTH
(2a) // EXEC CALP1
(3) IF $RC¬=ð THEN
(4) // EXEC CALP1A,PARM='&PNAM'

// EXEC CALP2
(5) IF PNAM=MONTH THEN

// EXEC CALP3
(6) GOTO $EOJ

(7) /. CAERROR
// EXEC CALERR

(8) /&

(1) The ON statement sets a global condition that is valid for the whole job
stream. After each job step (EXEC performed) it is checked whether the
return code passed is greater 20. If so, all statements up to label CAERROR
are skipped and the error program CALERR is called. Otherwise, processing
continues with the next statement.

ON $RC<=20 CONTINUE overrides the default-ON condition: ON $RC>=16
$EOJ.

(2) The SETPARM statement assigns to parameter PNAM the value (MONTH)
which is used as input for program CALP1A and for determining whether
program CALP3 must be run.

(2a) If the return code passed is greater than 20, processing continues at label
CAERROR, because the ON conditions are checked immediately after
end-of-step, and the following IF statement (3) cannot be processed.

(3) After program CALP1 has finished processing it is checked whether the return
code is not equal to zero. If so, program CALP1A is performed, otherwise
(that is, return code=0) processing continues with CALP2.

(4) By specifying PARM='&PNAM', substitute the symbolic parameter &PNAM
with MONTH and supply it as input for CALP1A.

PARM is an operand of the EXEC statement for passing information to the
program to be executed. (Besides a symbolic parameter, as in this example,
you can specify a value of up to 100 characters in length and enclosed in
quotes.) Symbolic parameters are discussed in detail later in this section.

(5) After program CALP2 has finished, a check is made for parameter PNAM. If
the value is MONTH, CALP3 is performed. Value WEEK would cause
program CALP3 to be skipped.

80 IBM VSE/ESA Guide to System Functions

 Controlling Jobs

(6) After the job stream has been successfully completed the GOTO statement
causes a skip to end-of-job (/&).

(7) Label CAERROR defines the entry for error processing performed by program
CALERR.

(8) If no error processing is required, you could specify in (1) ... GOTO $EOJ
instead of GOTO CAERROR. This would cause a direct skip to end-of-job
(/&).

When using conditional job control the following rules must be observed:

� The statements of a job stream can only be skipped in forward direction.

� If a label is not found before end-of-procedure or end-of-job, a skip to
end-of-job is performed.

� No check for duplicate labels is performed. A skip is always performed up to
the first matching label found.

� ON-conditions are checked first whenever a job step has been executed.

� If there are several ON statements defined in a job stream, the conditions and
actions of these statements are stored and processed in a "last in-first checked"
sequence.

Abnormal Termination of a Job Stream
Jobs that terminate abnormally are handled as follows:

 Cancel Condition
If a job stream is canceled, either through the AR or job control CANCEL
command, and an ON $CANCEL condition is in effect, the action specified is
performed (for example, a skip to a label) and processing continues. Otherwise,
the job is flushed.

 ABEND Condition
An ON $ABEND condition is raised when a job step ends abnormally. If an
ON $ABEND action has been specified, this action is performed (for example, a
skip to a label) and processing continues. Otherwise, the job is flushed.

If you want to perform your own abnormal termination processing, you have to use
the STXIT AB user exit. Such a routine may issue a return code and define in
addition how the erroneous job step is to be terminated - via an EOJ or via a
DUMP macro.

In the following example, two input files are to be merged and then processed. The
contents of the input files is first verified and the subsequent processing steps are
chosen according to the result of the verification step:

 Chapter 3. Controlling Jobs 81

 Controlling Jobs

// JOB EXAMPLE 1
(1) ON $ABEND GOTO ERRLST
(2) SETPARM INPPARM=''

// EXEC VERXL1
(2a) SETPARM RC1=$RC

// EXEC VERXL2
(3) IF $MRC=ð THEN
 GOTO MERGE
(3a) IF $RC>ð AND RC1>ð THEN
 GOTO ERRLST
(4) SETPARM INPPARM=INCOMPLETE

// EXEC COPYXL
(5) \ Use alternate file for processing

\ incomplete input
// DLBL NEWMFIL1,'NEW MASTER',1ð
// EXTENT SYSð1ð,,1,ð,2ðð,2ð

(5) // PAUSE PLEASE ENTER TEMPORARY ASSIGNMENT
 GOTO PROCESS

(6) /. MERGE
// EXEC MERGEXL

(7) /. PROCESS
// EXEC PROXL12

(8) IF $RC>4 OR INPPARM=INCOMPLETE THEN
 GOTO ERRLST
(9) ON $ABEND GOTO $EOJ

// EXEC LISTXL
 GOTO $EOJ
(1ð) /. ERRLST

// EXEC ERRLST12
 /&

(1) An ON condition is set for the whole job stream. In case of an abnormal
termination a skip to label ERRLST is performed.

(2) The parameter named INPPARM is nullified.

(2a) The return code of program VERXL1 is assigned to the parameter RC1.

(3) After both verification programs (VERXL1 and VERXL2) have completed
processing, a test is made whether return codes greater zero have occurred.
If not, a skip to label MERGE is performed and both input files are merged
and processed.

(3a) If both programs, VERXL1 and VERXL2, passed return codes greater zero, a
skip to label ERRLST is performed and program ERRLST12 is executed
before finishing the job.

(4) If only one program ended with a return code greater zero, parameter
INPPARM is set to INCOMPLETE. Program COPYXL is performed to copy
the incomplete input to the processing file.

(5) An alternate file must be used to process the incomplete input and the
// PAUSE statement allows the operator to enter // ASSGN SYS010, ...
before a skip to label PROCESS is performed.

(6) Label MERGE is the entry point for processing the correct input.

(7) Label PROCESS is the entry point if no merge could be performed.

82 IBM VSE/ESA Guide to System Functions

 Controlling Jobs

(8) If the return code of program PROXL12 is greater than 4 or INCOMPLETE is
set for parameter INPPARM, a skip to label ERRLST is performed and
program ERRLST12 is executed.

(9) The $ABEND condition is changed from GOTO ERRLIST (1) to the system
default which is GOTO $EOJ. This means, if program LISTXL terminates
abnormally, a skip to end-of-job is performed and no error list is produced.

(10) Label ERRLST is the entry point in case of an error and if an error list is to be
produced.

Using Cataloged Procedures
This section describes cataloged procedures and how to use them. It includes
information on:

� Input data in procedures;
 � Partition-related procedures;
� Retrieving cataloged procedures;

 � Multi-step procedures;
� Using symbolic parameters;

 � Nested procedures.

How a procedure is cataloged is discussed in Chapter 4, “Using VSE Libraries” on
page 97.

SYSIPT Data in Cataloged Procedures
Data read from the logical unit SYSIPT may be made part of your cataloged
procedure. System service and utility programs, as well as language translators
read their input from SYSIPT. Such input may be a data file (end indicator is a /*
statement) or control information (submitted via statements) required for a particular
program. Only those control statements are read from SYSIPT that follow the
EXEC statement calling the program. Control statements that can be placed before
the EXEC statement are read from SYSRDR as are all other statements of a job
stream. The linkage editor statements (ACTION, ENTRY, INCLUDE, and PHASE)
fall into this category.

To include SYSIPT inline data in cataloged procedures is useful mainly in case of
control information for system programs.

Inline data in procedures may also be any data that is processed under control of
the device independent IOCS (DTFDI) used by your program or IBM-supplied
programs. Normally, though, you would not catalog source programs or data for
your application programs as part of a procedure.

When cataloging a procedure containing SYSIPT data, you must use the operand
DATA=YES in the librarian CATALOG command. When procedures are nested,
either all or none of them must have been cataloged with DATA=YES. You cannot
mix DATA=YES and DATA=NO procedures in one nesting.

 Chapter 3. Controlling Jobs 83

 Controlling Jobs

Notes:

1. Including SYSIPT data in a cataloged procedure requires that you include all
data not only part of it.

2. SYSIPT data in a cataloged procedure cannot contain symbolic parameters.

Cataloging Partition-Related Procedures
Although a given procedure may be executed in any partition, a particular job may
need a specific set of job control statements dependent on the partition in which it
runs. For example, you may want to run a job to define search chains and assign
logical units for each partition. Since each partition requires a different set of
statements, you need a cataloged procedure for each of your partitions.
Partition-related cataloged procedures then allow you to retrieve and execute the
appropriate procedure with one version of the EXEC statement, no matter which
partition you are running in. The ASI JCL procedures are examples of
partition-related procedures.

To catalog partition related procedures, follow the naming conventions described
below.

Naming Conventions for Static Partitions:

� $ as the first character of the procedure name.

� The partition indicator (0=BG, 1=F1, 2=F2, ..., A=FA, B=FB) as the second
character.

� Any alphameric characters, including trailing blanks, as the third through eighth
characters.

Naming Conventions for Dynamic Partitions:

� The class of the dynamic partition as the first character of the procedure name.

� $ as the second character of the procedure name.

� Any alphameric characters, including trailing blanks, as the third through eighth
characters.

In the EXEC statement used to start the job, the first two characters of the
procedure name must be $$, with the remaining characters identical to the last six
characters of the cataloged name. For example, the statement:

// EXEC PROC=$$INIT

would call procedure $0INIT when entered in the BG partition, $1INIT in the F1
partition, $2INIT in the F2 partition, and so on. For a dynamic partition with class
'C', for example, the procedure name would be C$INIT.

Retrieving Cataloged Procedures
To retrieve a cataloged procedure from a sublibrary, you must use the PROC
operand in the EXEC job control statement specifying the name of the cataloged
procedure. Assume that a program called PAYROLL uses the following job control
statements (in addition to the // JOB and /& statements) and that these statements
have been cataloged in a sublibrary under the procedure name PAY.

84 IBM VSE/ESA Guide to System Functions

 Controlling Jobs

// ASSGN SYSð17,SYSRDR
// ASSGN SYSð18,SYSPCH
// ASSGN SYSð19,ððE
// ASSGN SYSð2ð,TAPE
// ASSGN SYSð21,DISK,VOL=111111
// TLBL TAPFLE,'FILE-IN'
// DLBL DSKFLE,'FILE-OUT',2ðð2/365,SD
// EXTENT SYSð21,111111,1,ð,2ðð,4ðð
// EXEC PAYROLL

 /+

If the program PAYROLL is to be executed, the programmer (or operator) would
simply prepare the following job control statements:

// JOB USER1
// EXEC PROC=PAY

 /&

When job control reads the EXEC PROC=PAY statement in the input stream, it
knows by the operand PROC that a cataloged procedure is to be inserted and
retrieves the procedure from the sublibrary, which must have been specified in a

LIBDEF PROC,SEARCH=...

statement entered in the partition. When job control reads and processes the
control statement

// EXEC PAYROLL

the program PAYROLL is loaded and given control. When the execution of that
program is complete, job control reads the next statement from the sublibrary and,
in this example, would find an end of procedure indicator (/+). This causes job
control to end reading procedure statements from the sublibrary and to continue
reading input from the device that is assigned to SYSRDR. Job control now finds
the /& statement and performs end-of-job processing as usual.

Note: The listing of job control statements on SYSLOG and/or SYSLST will show
the message EOP PAY at the end of the inserted procedure (depending on
the LOG/NOLOG option or the LOG/NOLOG command).

Several Job Steps in One Procedure
A cataloged procedure may contain more than one EXEC statement, that is, it may
contain control statements for more than one job step (within the same job).

A program written in assembler language, for instance, requires three job steps to
assemble, link edit, and execute the program. Using a cataloged procedure, your
input stream for the entire job (on SYSIN for simplicity) would contain the following:

 Chapter 3. Controlling Jobs 85

 Controlling Jobs

// JOB USER
// OPTION LINK
// EXEC ASMA9ð....

 ...
source deck of program to be assembled

 ...
 /\
// EXEC LNKEDT

 // EXEC
 ...
data for program to be executed

 ...
 /\
 /&

If the OPTION statement and the three EXEC statements were cataloged under the
name ASDPROC, the input stream could be simplified as shown below:

Input from SYSIN: Procedure ASDPROC:

// JOB USER
// EXEC PROC=ASDPROC // OPTION LINK
... // EXEC ASMA9ð....

source statements of
program to be // EXEC LNKEDT

 assembled // EXEC
 ...
/\ /+ (end indicator)

 ...
data to be

 processed
 ...
 /\
 /&

Notes:

 1. The statement

// EXEC ASMA9ð....

calls the High Level Assembler. Refer to “High Level Assembler
Considerations” on page 174 for further details.

2. Since all data input is to be read from SYSIPT, procedure ASDPROC must be
cataloged with DATA=NO.

The same can be done for any number of job steps. The programs called within
one job should logically belong together. A stock control program STOCK, for
instance, may be run daily to compile statistical data that can be used to prepare
the following lists:

1. An exception list that shows which items are low in stock. Required daily.

2. A list that shows the sales in currency for a certain item or group of items.
Required weekly.

3. A list that shows the sales in number of units for each item or group of items.
Required monthly.

4. An inventory list. Required half-yearly.

86 IBM VSE/ESA Guide to System Functions

 Controlling Jobs

To simplify processing, four procedures may have been cataloged:

STKPR1 - two job steps: the first to execute STOCK, the second to prepare list 1.

STKPR2 - three job steps: the first two are the same as for STKPR1, the third to
prepare list 2.

STKPR3 - four job steps: the first three the same as for STKPR2, the fourth to
prepare list 3.

STKPR4 - five job steps: the first four the same as for STKPR3, the fifth to prepare
list 4.

Which lists are printed after every run of STOCK depends then on which cataloged
procedure is used.

Using Symbolic Parameters
You can further increase the flexibility of your jobs by using, in addition to
conditional job control, symbolic parameters as described in the following
paragraphs. You can specify symbolic parameters in any job or cataloged
procedure. By doing so you are able to set up your job streams in advance and
modify them at processing time as needed.

Defining Symbolic Parameters
A symbolic parameter is a character string of 1 to 7 alphameric characters
preceded by an ampersand (&). The first character after & must be alphabetic.
Parameters are referenced by a parameter name of 1 to 7 alphameric characters,
where the first one must be alphabetic.

When a cataloged procedure is processed each symbolic parameter is either
assigned a value or nullified. This can be done with the EXEC PROC (for defining
or passing values), with the PROC (for defining default values), and with the
SETPARM statement (for setting values during processing).

For a complete description and the syntax of each of these statements refer to the
manual VSE/ESA System Control Statements under “EXEC”, “PROC”, and
“SETPARM”. The following example shows how to define symbolic parameters:

Job Control Statements Submitted:

// JOB TESTFILE
// EXEC PROC=TESTFIL,FID=FILE2,SER=ððððð2

 /&

Procedure Called (TESTFIL):

// PROC PGM=PTAP1,FID=FILE1
// TLBL TEST,'&FID',,&SER
// EXEC &PGM

 /+

Job Generated:

// JOB TESTFILE
(1) // TLBL TEST,'FILE2',,ððððð2
(2) // EXEC PTAP1
 /&

 Chapter 3. Controlling Jobs 87

 Controlling Jobs

(1) The definition of the symbolic parameters &FID (file identification) and &SER
(file serial number) are provided by the EXEC PROC statement.

(2) Since EXEC PROC does not provide a substitution for &PGM, the default
value PTAP1, assigned in the PROC statement, becomes effective.

When using symbolic parameters the following rules must be observed:

� The operation field of a statement cannot contain a symbolic parameter.

� Symbolic parameters are not allowed in a PROC or label statement.

� A symbolic parameter that is not defined causes an error message.

� If the value assigned to a symbolic parameter is a character string of
alphameric characters only, no enclosing quotes are necessary. Otherwise, it
has to be enclosed in quotes.

� The maximum length allowed for the value of a symbolic parameter is 50
characters.

� If the same parameter is defined in an EXEC PROC statement and in the
PROC statement of the called procedure, the value assigned in the
EXEC PROC statement is used. Values assigned in the PROC statement of
the procedure are default values.

� If an ampersand (&) is to be part of the JCL statement or of the string to be
assigned to a parameter, the following rules apply:

– An & must be represented by two &;
– A single & followed by an alphabetic character is interpreted as the

beginning of a symbolic parameter.
– A single & followed by a non-alphabetic character is an invalid combination,

except a single & followed by a blank (which is left unchanged).

� For PROC and EXEC PROC statements, the following rules apply:

– If you do not want to assign default values to parameters, you do not need
a PROC statement.

– If a cataloged procedure with symbolic parameters does not contain a
PROC statement, PROC without operands is assumed.

– If duplicate parameter names occur in an EXEC PROC or PROC statement
an error message is issued.

� For EXEC PROC and PROC statements nine continuation lines are allowed.

� The recommended maximum number of parameters to be specified per
statement is 36. Sufficient buffer space is available for that number. If you
specify more, the buffer space available may not be sufficient.

 SETPARM Statement
The values assigned by SETPARM are effective outside of procedures or for the
procedure in which the SETPARM statement occurs. However, when a parameter
is passed to a called procedure (as in nested procedures) it can be effective for the
called procedure as well. Refer to “Using Nested Procedures” later in this section.

88 IBM VSE/ESA Guide to System Functions

 Controlling Jobs

Defining Parameters and Passing Parameter Values
Parameter values can be passed from a calling procedure to a called procedure.
The term “calling procedure” includes the job stream submitted. When a called
procedure calls another cataloged procedure, the term “nested procedures” applies.
Nested procedures are discussed in detail later in this chapter. The following
discussion applies to the job submitted and to any procedure called by it.

When you call a procedure, you can define parameters and pass values in various
ways. Assume the following procedure call issued by a job or a procedure named
XYZ:

// EXEC PROC=CALL1,B=MAX,C='',D=,E,A=&A

B=MAX The value (character string) MAX is assigned directly to parameter B for
CALL1. This has no effect for XYZ.

C='' Parameter C is nullified.

D= Parameter D is nullified.

E The value for E has to be defined in the calling procedure (XYZ). (For
example, SETPARM E=400.) This value is in effect for XYZ and is
passed to the called procedure (CALL1). but may be changed by
CALL1, and the change is valid for both CALL1 and XYZ. For example,
if CALL1 issues SETPARM E=500, the parameter value of 500 becomes
valid for CALL1 and XYZ.

This allows you to pass back to the calling procedure a new value for a
passed parameter, a return code for example.

A=&A This assumes that both XYZ and CALL1 have a parameter named A.
The current value of the parameter A in XYZ is passed to the parameter
A in CALL1. A change of that value within CALL1 does not affect the
value defined for XYZ.

Concatenating Symbolic Parameters
Symbolic parameters may be concatenated with a constant. If a symbolic
parameter precedes a constant, a delimiter is required. A period (.) is used for that
purpose. The period does not appear in the resulting value. If a period is required
between the parameter and a following constant, two periods must be specified.
For example:

Concatenated item: Value of parameter: Result:

&SIZE.(8ð) SIZE=BLOCK BLOCK(8ð)
&LIBNAME.LIB LIBNAME=PRIV1 PRIV1LIB
SYS&NUM NUM=ðð1 SYSðð1
&A..B A=X X.B
AB&C.D C='' ABD

Also, a symbolic parameter can be concatenated with another symbolic parameter.
They may be or may not be separated by a period, because the single '&' at the
beginning of the second parameter also ends the first parameter.

Concatenated item: Value of parameter: Result:

&A.&B.
 or A=19,B=89 1989
&A&B.

 Chapter 3. Controlling Jobs 89

 Controlling Jobs

In the following example, the execution of subsequent job steps, invoked by a
cataloged procedure, is made dependent on the return code of the previously
executed program. Job Control Statements Submitted:

// JOB SPROGRAM
ON $ABEND OR $CANCEL GOTO AB
ON $RC>7 CONTINUE
SETPARM CRC=ð
// EXEC SPRGCTR1
SETPARM CRC=$RC,ABEND=NO
// EXEC PROC=SPROC123,CRC,PGM=SPRGE2
GOTO EVEN
/. AB
SETPARM ABEND=YES
// EXEC SPRGONLY
/. EVEN
IF CRC<12 OR ABEND=YES THEN
// EXEC SPRGEVEN
/&

Procedure Called (SPROC123):

IF CRC=ð THEN
// EXEC SPRGE1
IF CRC¬=8 THEN
// EXEC &PGM
IF CRC<=8 THEN
// EXEC SPRGE3
/+

If a cataloged procedure with symbolic parameters does not start with a // PROC
statement, // PROC without parameters is assumed.

Sequence of Processed Statements:

 // JOB
(1) ON $ABEND OR $CANCEL GOTO AB
(1) ON $RC>7 CONTINUE

// EXEC SPRGCTR1
(2) SETPARM CRC=$RC,ABEND=NO

IF CRC=ð THEN
// EXEC SPRGE1
IF CRC¬=8 THEN

(3) // EXEC SPRGE2
IF CRC<=8 THEN
// EXEC SPRGE3

(4) GOTO EVEN
(5) /. AB
 SETPARM ABEND=YES

// EXEC SPRGONLY
(6) /. EVEN

IF CRC<=12 OR ABEND=YES THEN
// EXEC SPRGEVEN

 /&

(1) ON conditions that are in effect for the whole job are set.

(2) The return code of program SPRGCTR1 is used for deciding which job steps
are to be executed next (CRC=$RC).

90 IBM VSE/ESA Guide to System Functions

 Controlling Jobs

(3) Program name SPRGE2 has been defined by the EXEC PROC statement.

(4) Normal processing; either program SPRGEVEN executed or a further skip to
/& is performed.

(5) Entry point for abnormal termination or a cancel condition occurred; programs
SPRFONLY and SPRGEVEN (ABEND=YES) are executed.

(6) Entry point for normal processing. Program SPRGEVEN is executed if the
return code from program SPRGCTR1 is less than 12.

Using Nested Procedures
Cataloged procedures can call other cataloged procedures. This is referred to as
nesting. Any cataloged procedure can be nested; such a procedure may or may not
contain symbolic parameters and/or conditional job control statements. But by
using nested procedures you can make full use of the advantages of conditional job
control and symbolic parameters. Up to 16 nesting levels are allowed. Level 0 is
the SYSRDR level, level 1 is a procedure call from level 0.

A procedure is said to contain another procedure when an EXEC PROC statement
occurs in the procedure. For example, if procedure A has the statement
// EXEC PROC=B in it, then procedure A contains procedure B (or, conversely,
procedure B is contained in procedure A).

The following rules must be observed when using nested procedures:

� A cataloged procedure cannot call itself.

� A procedure cannot call a procedure in which it is contained.

� Either all or none of the procedures in one nesting must have been cataloged
with DATA=YES.

� A GOTO statement and the target label have to be on the same level, that is,
within a single procedure or within the job submitted. This is also true for an
ON statement referencing a label.

� An ON condition is checked on the nesting level on which it is specified and in
any procedure called from this level or below in the same nesting. However,
the search for the target label is only performed on the level on which the ON
statement was specified.

� The definition of a symbolic parameter in an EXEC PROC statement takes
effect only for the called procedure.

� If a parameter is to be passed to a called procedure and back, it must first be
defined on the calling level.

� A nested procedure must not include a LIBDEF statement.

Refer also to the processing flow of nested procedures shown in Figure 38 on
page 92.

 Chapter 3. Controlling Jobs 91

 Controlling Jobs

Jo b Co nt ro l Statem ents :

/ / PROC

/ / EXEC PGMC
/+

/ / PROC

/ / EXEC PGMD
/+

/ / PROC

// EXEC PGMA
// EXEC PROC= PROCB

// PROC

// EXEC PGMB
// EXEC PROC= PROCC

/ / PROC

/ / EXEC PGMC
/+

/ +

/ +

/ / PROC

/ / EXEC PGMD
/+

LEVEL 0

LEVEL 1

LEVEL 2

LEVEL 3

LEVEL 0

LEVEL 1

LEVEL 0/ &

Processing Flow:

From PROCC.PROC:

From PROCA.PROC: From PROCB.PROC:

From PROCD.PROC:

/ / EXEC PROC= PROCD

// PROC

// EXEC PGMB
// EXEC PROC= PROCC
/+

From SYSRDR:

/ / JOB NEST
// EXEC PROC= PROCA

// JOB NEST
// EXEC PROC= PROCA
// EXEC PROC= PROCD
/&

/ / PROC

// EXEC PGMA
// EXEC PROC= PROCB
/+

...

......

...

...

...

...

...

Figure 38. Processing Flow of Nested Procedures (4 Levels)

The following example uses nested procedures, symbolic parameters, and
conditional job control to process files either on a monthly or daily basis.

92 IBM VSE/ESA Guide to System Functions

 Controlling Jobs

Job Control Statements Submitted:

// JOB NESTED AND CONDITIONAL
ON $RC>=8 GOTO LIST
SETPARM UPDPRM='DAILY'
SETPARM RCSTRG=
// EXEC PROC=FILUPDT,SER=338ðð4,USERLBL=YES,
 RCSTRG,UPDPRM
/. LIST
IF UPDPRM='MONTHLY' THEN
// UPSI 1
EXEC LISTSUM,PARM='&RCSTRG'
/&

Procedure Called (FILUPDT):

// PROC DEV=338ð,USERLBL=NO
// ASSGN SYSðð4,TAPE,VOL=TAPEIN

(1) // EXEC PROC=LABEL,FN=CHANGES,FID='INPUT.FILE',
 RP=',ð',LU=SYSðð5,TRBL=95,SER,USERLBL

// SETPARM TBNO=95
(1) // EXEC PROC=LABEL,FN=DAYFILE,FID='DAY.MASTER.
 FILE',
 RP=',5',LU=SYSðð6,TRBL=19ð,TBNO,SER,
 USERLBL
(1) // EXEC PROC=LABEL,FN=MONFILE,RP=',4ð',
 FID='MONTH.MASTER.FILE',LU=SYSðð7,
 TRBL=285,TBNO,SER,USERLBL

// EXEC PGM=INPUT
ON $RC>12 GOTO $EOJ

 SETPARM RETC1=$RC
ON $ABEND GOTO RECOVERY
// EXEC UPDATE,PARM='&UPDPRM'

 SETPARM RETC2=$RC
(1) SETPARM RCSTRG='&RETC1,&RETC2'

ON $ABEND GOTO $EOJ
IF RETC2>6 THEN

 GOTO RECOVERY
 GOTO EOP
 /. RECOVERY

// EXEC RECOVER,PARM='&RCSTRG'
 /. EOP
 /+

(1) In these statements the specifications for parameters FID, RP, and RCSTRG
have to be within single quotes because the special characters period (.) and
comma (,) are used.

Procedure Called (LABEL):

// PROC RP=,SER=,TBNO=38,
 SCT=,DEV=338ð,TP=TEMP
IF USERLBL=NO THEN
GOTO ASGNONLY
// DLBL &FN,'&FID'&RP
// EXTENT &LU,&SER,1,ð,&TRBL,&TBNO&SCT
/. ASGNONLY
// ASSGN &LU,&DEV,&TP,VOL=&SER,SHR;
/+

 Chapter 3. Controlling Jobs 93

 Controlling Jobs

Sequence of Processed Statements:

// JOB NESTED AND CONDITIONAL
(1) ON $RC>=8 GOTO LIST
 SETPARM UPDPRM='DAILY'
 SETPARM RCSTRG=
(2) // ASSGN SYSðð4,TAPE,VOL=TAPEIN
(3) IF USERLBL=NO THEN
 GOTO ASGNONLY (skipped)
(4) // DLBL CHANGES,'INPUT.FILE',ð
(4) // EXTENT SYSðð5,338ðð4,1,ð,95,38
 /. ASGNONLY
(5) // ASSGN SYSðð5,338ð,TEMP,VOL=338ðð4,SHR
(6) // SETPARM TBNO=95
(7) IF USERLBL=NO THEN
 GOTO ASGNONLY (skipped)
(8) // DLBL DAYFILE,'DAY.MASTER.FILE',5
(8) // EXTENT SYSðð6,338ðð4,1,ð,19ð,95
 /. ASGNONLY
(9) // ASSGN SYSðð6,338ð,TEMP,VOL=338ðð4,SHR
(1ð) IF USERLBL=NO THEN
 GOTO ASGNONLY (skipped)
(11) // DLBL MONFILE,'MONTH.MASTER.FILE',4ð
(11) // EXTENT SYSðð7,338ðð4,1,ð,285,95
 /. ASGNONLY
(12) // ASSGN SYSðð7,338ð,TEMP,VOL=338ðð4,SHR
(13) // EXEC PGM=INPUT
(14) ON $RC>12 GOTO $EOJ
(15) SETPARM RETC1=$RC
(16) ON $ABEND GOTO RECOVERY
(17) // EXEC UPDATE,PARM='&UPDPRM'
(18) SETPARM RETC2=$RC
(19) SETPARM RCSTRG='&RETC1,&RETC2'
(2ð) IF RETC2>6 THEN
 GOTO RECOVERY
(21) ON $ABEND GOTO $EOJ
 GOTO EOP
 /. RECOVERY
(22) // EXEC RECOVER,PARM='&RCSTRG'
 /. EOP
(23) /. LIST
(24) IF UPDPRM='MONTHLY' THEN

// UPSI 1
(25) // EXEC LISTSUM,PARM='&RCSTRG'
 /&

(1) Initial ON conditions and values are set. 'DAILY' indicates that this is a daily
update run as opposed to a monthly update run. RCSTRG is assigned a null
string.

(2) This is the first statement of procedure FILUPDT. The parameter values
passed with // EXEC PROC=FILUPDT cause the following: USERLBL=YES
overrides the default USERLBL=NO specified in the // PROC statement. For
RCSTRG a null string and for UPDPRM 'DAILY', as specified at the beginning
of the job stream, is passed.

(3) This is the first statement of procedure LABEL, which is called for the first
time here. With statement // EXEC PROC=LABEL parameter values are
specified directly. In addition, the specification of SER and USERLBL causes

94 IBM VSE/ESA Guide to System Functions

 Controlling Jobs

the values for these parameters (specified with // EXEC PROC=FILUPDT) to
be passed to procedure LABEL.

Procedure LABEL is called three times: (3), (6), (9). All three calls are shown
so that label ASGNONLY appears three times. During processing only the
label of that procedure call currently being processed is in effect. If
USERLBL=NO were in effect, statements // DLBL and // EXTENT would be
skipped and previously defined labels used instead.

(4) The parameter values are defined as follows:

For the // DLBL statement the values (filename, file-id, and retention period)
are specified in the // EXEC PROC=LABEL statement. This is also true for the
values of the // EXTENT statement, except for the volume serial number
(338004) which is defined in the EXEC PROC=FILUPDT statement and
passed via the // EXEC PROC=LABEL statement, and the number of tracks
(38) for which the default value of the // PROC statement is in effect.

(5) The parameter values are passed as follows:

The logical unit (SYS005) is specified in // EXEC PROC=LABEL statement.
The volume serial number (338004) is specified in the // EXEC
PROC=FILUPDT statement and passed by specifying SER in the // EXEC
PROC=LABEL statement. For the device type (3380) and the temporary
assignment (TEMP) the default values as specified in the // PROC statement
are in effect.

(6) The SETPARM statement defines the number of tracks to be in effect for the
subsequent two calls of procedure LABEL.

(7) Second call of procedure LABEL.

(8) Parameter values are passed.

(9) For parameter value passing refer to (5).

(10) Third call of procedure LABEL.

(11) Parameter values are passed.

(12) For parameter value passing refer to (5).

(13) Read input tape (to disk file CHANGES) and prepare input for update.

(14) The job is terminated if a job step ends with a return code > 12.

(15) The return code passed by program INPUT is assigned to RETC1.

(16) Another ON condition is set for the following job steps.

(17) The symbolic parameter &UPDPRM is replaced by the value 'DAILY' serving
as processing parameter for program UPDATE.

(18) The return code passed by program UPDATE is assigned to RETC2.

(19) Both return codes (passed by programs INPUT and UPDATE) are assigned to
RCSTRG which was set to zero at the beginning of the job stream.

(20) Depending on the return code of program UPDATE, either a skip to label
RECOVERY or to label EOP is performed.

(21) The system default is reassigned to the $ABEND condition.

(22) Both return codes serve as processing parameter for program RECOVERY.

 Chapter 3. Controlling Jobs 95

 Controlling Jobs

(23) Label /. EOP is the last statement of procedure FILUPDT; with label /. LIST
the processing of the job stream originally submitted is resumed.

(24) A program switch for program LISTSUM may be set via the // UPSI statement
depending on a 'DAILY' or 'MONTHLY' run.

(25) Program LISTSUM prints a summary of the monthly or daily master files and
explains the return codes which were passed back from procedure FILUPDT
and which are used as input for LISTSUM.

96 IBM VSE/ESA Guide to System Functions

 Using VSE Libraries

Chapter 4. Using VSE Libraries

Introducing the VSE Library Concept
Libraries can be considered as files which are under the control of the Librarian
program. They need space on disk devices to be allocated with either

� DLBL and EXTENT statements if residing in non-VSAM space, or with

� DLBL and IDCAMS control statements if residing in VSAM-managed space.

The allocated disk file must then be defined as a library by specifying the file name
through a Librarian DEFINE command. Refer to “Defining a Library, Sublibrary, or a
SYSRES File” on page 102 for job stream examples. At least one sublibrary must
be defined within a library before any type of library member can be cataloged.

Libraries in VSE/VSAM space can also be defined through the Define a Library
dialog of the Interactive Interface as described in the manual VSE/ESA
Administration under “Defining a Library”.

It is advisable to add the DLBL and EXTENT statements for libraries to the system
standard label area defining them with the Librarian DEFINE command. In this way
you avoid having to submit these statements and commands each time you need to
define access to a library.

Libraries are mainly accessed by the following programs:

� Language translators , to retrieve source-type members for inclusion in the
object module (OBJ) to be created.

� The Linkage Editor , to retrieve members of type OBJ for processing and to
catalog members of type PHASE newly created.

� The supervisor fetch/load routine, to fetch or to load members of type PHASE
into storage for execution.

� Job control , to retrieve members of type PROC called in EXEC PROC
statements.

� VSE/POWER, to retrieve SLI members.

� Dump programs , to catalog members of type DUMP.

� The Info Analysis program, to work with members of type DUMP.

� The Librarian program, to perform library service functions.

� User application programs , using the Librarian application program interface
(API).

Normally, you need a LIBDEF job control statement for all the programs except the
Librarian, to set up library access definitions. “Establishing a Library Access
Definition” on page 105 discusses the usage of the LIBDEF and the related
LIBDROP and LIBLIST statements.

MSHP, the VSE installation and service tool, accesses your system's libraries by
calling the Librarian or the linkage editor. How you can access members that are

 Copyright IBM Corp. 1984, 1999 97

 Using VSE Libraries

under MSHP control is discussed under “Accessing Members Controlled by MSHP”
on page 108.

 Library Structure
A library always consists of one or more sublibraries. Programs, procedures and
dumps are stored as members in the sublibraries. Sublibraries vary in size. They
are dynamically extended as required until the space assigned to the library as a
whole is exhausted.

If library space is freed because a member has been deleted, this space is
automatically available for reuse.

Sublibrary members are identified by member name and member type.

The Librarian program addresses libraries by their names. Sublibraries are
addressed by library and sublibrary name, for example:

LIB1.SUBN

If the Librarian is to address a member or members, an ACCESS or CONNECT
command must be given first to specify in which sublibrary. For example:

ACCESS SUBLIBRARY=LIB1.SUBN

For other programs, the LIBDEF statement specifies in which sublibrary a member
is to be searched for, or in which sublibrary it is to be stored. Sublibraries of one or
more libraries may be chained (concatenated). Such a search chain is always
related to a partition.

VSE Library Types
A VSE/ESA system includes two VSE library types: the system library and
additional private libraries. There is no difference in their logical structure.

 System Library
 The system library (IJSYSRS) contains at least the predefined system sublibrary
(SYSLIB). The system library is also referred to as SYSRES file. After your system
has been installed, IJSYSRS.SYSLIB contains all system programs needed for
system startup and for the operation of your system. The system library occupies
one extent only and resides on the disk volume used for performing IPL. This
volume is referred to as DOSRES.

An alternate IJSYSRS.SYSLIB resides on the system volume SYSWK1. This is
intended for use with system functions such as fast service upgrade and
unattended node support.

 Private Libraries
 User-written programs are usually stored in private libraries. It is preferable to have
them on disk volumes of their own to reduce the disk arm movement on the
SYSRES volume and to provide faster access to the programs in general.

In addition, private libraries offer more flexibility with regard to size and
organization. The following functions are supported for private libraries:

98 IBM VSE/ESA Guide to System Functions

 Using VSE Libraries

� A private library may be maintained in space managed by VSE/VSAM. This
allows a dynamic extension of the library.

� A private library may occupy several extents. These extents may be located on
more than one disk volume.

� Besides being chained, libraries and their sublibraries may be shared among
partitions and across systems. This reduces the effort for handling the libraries
and increases system availability in general.

Types of Library Members
Most of the members stored in your libraries belong to one of the predefined
member types shown below:

source (A one-character, alphameric type): Source books (source code to be
processed by a language translator)

OBJ Object modules (language translator output)

PHASE Phases (machine-readable code processed by the Linkage Editor and
ready for execution)

PROC Procedures (sets of job control statements)

DUMP Dumps (data collected by the dump routines of the system)

You may also define member types of your own. How to do this is discussed later
in this section.

The maximum member size that the system can handle is about 2óñ records for
the fixed record format and about about 2óñ bytes (2GB) for the undefined format.
Usually, this is only of interest for members of type DUMP (when dumping a 2GB
partition).

 Source Books
Source books contain source code, either in the form of source statements or
macro definitions, which are to be processed by a language translator. To specify
the member type of a source book one of the following is allowed: A through Z, 0
through 9, #, $, or @. The letters A through I, P, R, and Z are reserved and used
for system components.

The sublibrary (or sublibraries) in which the language translator is to search for
source books is (are) specified in the job control statement:

// LIBDEF SOURCE,SEARCH=library.sublibrary...

This statement applies to all source member types.

When the assembler, for example, encounters a macro definition, the assembler
searches for the appropriate macro in the sublibraries specified (and in the system
sublibrary) and replaces the statement with the source code found.

Similarly, when a compiler encounters a reference to a source program, it searches
for a SOURCE-type member of the same name in the sublibrary(ies) specified in
the LIBDEF SOURCE,SEARCH statement.

 Chapter 4. Using VSE Libraries 99

 Using VSE Libraries

 Object Modules
Language translators process source code and produce output in the form of object
modules. These modules need to be processed by the Linkage Editor to become
executable phases. During the link-editing of a module other modules may have to
be included. If so, the Linkage Editor searches the sublibraries specified for the
modules in question. In this way, sections of code that are used by a number of
different programs need be written, translated, and cataloged in object format only
once.

Refer to “Cataloging Object Modules” on page 121 for sample job streams which
assemble and catalog object modules.

 Phases
Phases are programs or sections of code that have been processed by the Linkage
Editor and are ready to be loaded into storage for execution. Phases are cataloged
by the Linkage Editor as members of the type PHASE in the sublibrary specified in
the job control statement:

// LIBDEF PHASE,CATALOG=library.sublibrary

Normally, the Linkage Editor builds phases in relocatable format. For a relocatable
phase, the loader of VSE/Advanced Functions modifies the addresses as required
when the phase is being loaded. Such a phase can be loaded for execution into the
address area of any partition.

Programs that have been written as self-relocatable are linked and cataloged by the
Linkage Editor as self-relocatable phases. Any address relocation to be done for a
self-relocatable phase must be handled within that phase itself after it has been
loaded.

When a program is to be run, the phase name is specified in the job control EXEC
statement. The loader searches for a member of the type PHASE with this name in
the sublibrary (or sublibraries) specified in the job control statement:

// LIBDEF PHASE,SEARCH=library.sublibrary...

and in the system sublibrary.

 Procedures
Procedures are frequently used sets of job control statements (and sometimes
data) in card image format. These sets of control statements are referred to as
cataloged procedures when they are stored in a sublibrary. You must store
procedures as members of the type PROC, using the Librarian commands:

ACCESS SUBLIB=library.sublibrary
(to specify the sublibrary to be used), and

CATALOG name.PROC...
(to name the procedure,)

followed by the job control statements (and data, if required) to be included in the
procedure.

For details of the Librarian commands, see VSE/ESA System Control Statements
under “Librarian Commands”.

A job stream being processed may call cataloged procedures for inclusion into that
job stream.

100 IBM VSE/ESA Guide to System Functions

 Using VSE Libraries

Cataloged procedures may be modified while they are being processed. For details,
see the section "Using Cataloged Procedures" in Chapter 3, “Controlling Jobs” on
page 39 of this manual.

 A cataloged procedure may contain inline data, that is, data which is read by the
associated program from the device that is used for reading the job control
statements (SYSIPT). A procedure containing inline data must be cataloged with
the operand DATA=YES in the CATALOG statement. Further details about inline
data are provided under “SYSIPT Data in Cataloged Procedures” on page 83.

 Dumps
Dumps contain system relevant data and are created by the system's dump
routines, for example, when an abnormal program termination occurs. The data is
stored in the default dump library SYSDUMP:

// LIBDEF DUMP,CATALOG=SYSDUMP.sublibrary

The stored dumps can be analyzed later for problem determination with the
Information/Analysis program. One dump sublibrary is available for each static
partition with the partition identifier used as the sublibrary name: SYSDUMP.BG,
SYSDUMP.F1, SYSDUMP.F2, and so on. Only one sublibrary is reserved for
dynamic partitions: SYSDUMP.DYN.

All these sublibraries should be used for dumps only.

User-Defined Member Types
Besides the predefined member types discussed above, you may store any type of
data in your libraries and assign your own member type to it.

You can also change a predefined member type into a member type of your own
definition, using the Librarian RENAME command.

This allows you, for example, to maintain several versions of a cataloged
procedure. You can achieve this by assigning the same member name but different
member types (of your choice) to the different versions. One version, however,
must always have the predefined member type for procedures, namely PROC. This
version can be considered as activated, and when the procedure is called, it is
always this version that is chosen. You can easily activate another version of this
cataloged procedure by changing its member type to PROC. The same principle
applies when you have different versions of programs, whether source programs or
phases.

A sublibrary may contain any or all member types used at an installation. This
allows you to store, in one sublibrary, all members that are owned by one
programmer, or that belong to one application.

Year 2000 Support
The Librarian program provides Year 2000 support by using the sliding-window
technique to support four-digit years. The only exception is the display of a library
member. Such an output still shows two-digit years for the Last Update and the
Creation Date of the member if OUTPUT=NORMAL is in effect.

 Chapter 4. Using VSE Libraries 101

 Using VSE Libraries

Defining a Library, Sublibrary, or a SYSRES File
A private library can reside in VSAM-managed or non-VSAM-managed space.

Private Libraries in Non-VSAM-Managed Space
The physical location and the size of the library is defined via DLBL and EXTENT
statements. For example:

// JOB CREATE LIB
// OPTION PARSTD=ADD
// DLBL YOURLIB,'VSE.PRIV.LIB',99/365,SD
// EXTENT ,ððð888,1,ð,1ðð,19ð
// EXEC LIBR
DEFINE LIB=YOURLIB
/\
/&

The minimum size of the extent is 1 track for CKD devices or 10 blocks for FBA
devices. The maximum number of extents that can be specified for a private library
is 16. If these extents are located on different volumes, the device type must be the
same.

Private Libraries in VSAM-Managed Space
To define a private library in VSAM-managed space use the VSE/VSAM IDCAMS
utility program to:

� Create the master and a user catalog;

� Create VSE/VSAM space;

� Define a VSE/VSAM cluster for your library.

Instead of working with IDCAMS directly, you may use the Define a Library dialog
for this task. Refer to the manual VSE/ESA Administration under “Defining a
Library” for details.

When the primary space allocation is exhausted VSE/VSAM automatically extends
the library by using the secondary allocation specified.

The maximum number of extents is 16, as for non-VSAM libraries. The maximum
size of a library in VSAM-managed space is therefore

psize + 15 \ ssize

where psize is the primary allocation value and ssize the secondary allocation
value. VSE/VSAM always attempts to get an allocation in one single extent. If this
is not possible, multiple extents are used for each allocation, and the possible size
of the library becomes less than defined above.

The actual size of a library in VSAM-managed space can be displayed with the
Librarian command LISTDIR or the VSE/VSAM command LISTCAT.

A job for creating a cluster is shown below. A primary allocation of 10 cylinders and
a secondary allocation of 2 cylinders is used. It is assumed that the label
information for the master and user catalogs has been stored in the label
information area.

102 IBM VSE/ESA Guide to System Functions

 Using VSE Libraries

// JOB CLUSTER
// EXEC IDCAMS,SIZE=AUTO

DEFINE CLUSTER -
(FILE (YOURLIB) -
NAME (VSE.PRIV.LIB) -

 NONINDEXED -
 NOREUSE -

SHAREOPTIONS (3) -
RECORDFORMAT (NOCIFORMAT) -
VOLUMES (ððð999 ððð777) -
CYLINDERS(1ð 2)) -

 CATALOG (USER.CATALOG.NO1)
/\
/&

Note: The parameters NONINDEXED, NOREUSE, SHAREOPTIONS (3) and
RECORDFORMAT (NOCIFORMAT) must be used.

After running the cluster job stream you can create a private library, in this example
with the name YOURLIB:

// JOB CREATE VSAMLIB
// DLBL YOURLIB,'VSE.PRIV.LIB',,VSAM,DISP=(OLD,KEEP)
// EXEC LIBR
DEFINE LIB=YOURLIB
/\
/&

The parameter DISP=(OLD,KEEP) must be used. Only a DLBL but no EXTENT
statement is required.

A library in VSAM-managed space is deleted by deleting the library and by deleting
the cluster using the IDCAMS utility program. Secondary extents can be given back
to VSE/VSAM by running the following jobs:

 Backup library
 Delete library
 Delete cluster
 Define cluster
 Define library
 Restore library

 Defining Sublibraries
There is no difference in creating sublibraries in non-VSAM or VSAM-managed
space, or in the system library IJSYSRS.

Note: For details about the locking function in connection with the DEFINE
sublibrary command, refer to “Locking Rules” on page 141 and “Librarian
Handling of IGNLOCK” on page 142.

To create three sublibraries named YSUB1, YSUB2, and YSUB3 in library
YOURLIB, the following job stream is required. It is assumed that the label
information is in the partition standard label area.

 Chapter 4. Using VSE Libraries 103

 Using VSE Libraries

// JOB CREATE
// EXEC LIBR
DEFINE SUBLIB=YOURLIB.YSUB1,YOURLIB.YSUB2,YOURLIB.YSUB3
/\
/&

Defining Additional SYSRES Files
Refer also to “System Library” on page 98.

Besides your SYSRES file for IPL (identical with system library IJSYSRS) there
may be a need for additional SYSRES files that allow you to have system libraries
with a different set up available. To process these additional SYSRES files, you can
use the names IJSYSR1 through IJSYSR9.

In order to perform IPL with such a file, you have to create a system sublibrary
named SYSLIB within the file to contain the system programs and possibly user
programs required. You can then perform IPL with this file, for example IJSYSR4,
as with your original SYSRES file. The system interprets the SYSRES file used for
IPL always as IJSYSRS.

For a SYSRES file you can define only one extent, which must be in
non-VSAM-managed space. The extent starts on a fixed location on disk.

For CKD devices the extent starts on cylinder 0, track 0, but as a start address you
have to specify track 1 in the EXTENT statement. The system library itself starts on
track 8 and has a minimum size of 1 track. Thus the minimum number of tracks to
be specified in the EXTENT statement is 8.

For FBA devices the extent starts on block 0 but as a start address you have to
specify block 2 in the EXTENT statement. The system library itself starts on block
130 and has a minimum size of 10 blocks. Thus the minimum number of blocks to
be specified in the EXTENT statement is 138 (block 2 to 139).

A job for a CKD device may look as follows:

// JOB CREATE SYSRES
// DLBL IJSYSR4,...
// EXTENT ,ððð666,1,ð,1,2ðð
// EXEC LIBR
DEFINE LIB=IJSYSR4
DEFINE SUBLIB=IJSYSR4.SYSLIB
/\
/&

The SYSRES file created contains the proper IPL records according to the device
type (CKD or FBA). The Librarian retrieves this information from the SYSRES file
presently used for IPL.

104 IBM VSE/ESA Guide to System Functions

 Using VSE Libraries

Establishing a Library Access Definition
A LIBDEF statement either specifies a sublibrary in which members of type PHASE
or DUMP are to be stored, or establishes a search chain that indicates the
sequence of sublibraries to be searched when retrieving members of any
predefined type.

Cataloging Members of Type PHASE
The following statement specifies a sublibrary in which the output of the Linkage
Editor is to be cataloged:

// LIBDEF PHASE,CATALOG=MYLIB.MSUB1

Instead of PHASE you may specify the character asterisk (*). In connection with the
CATALOG parameter, * can mean only PHASE. See also examples for library
chaining.

Note: There is no default sublibrary for cataloging phases. A link-edit job, for
example, is canceled if the required sublibrary information for cataloging a
phase has not been provided through a // LIBDEF statement.

Cataloging Members of Type DUMP
The following statements specify each a sublibrary in which members of type
DUMP created by the system are to be stored:

// LIBDEF DUMP,CATALOG=SYSDUMP.BG (dump sublibrary for BG partition)
// LIBDEF DUMP,CATALOG=SYSDUMP.F1 (dump sublibrary for F1 partition)
 .

. (dump sublibrary for Fn partition)
 .
// LIBDEF DUMP,CATALOG=SYSDUMP.DYN (dump sublibrary for dynamic partitions)

SYSDUMP is the default name of the system dump library. Partition identifiers
should be used as sublibrary names as shown, except for the dynamic partition
dump sublibrary. The Information/Analysis program, which helps you to interpret
dumps, uses these sublibrary names by default.

 Library Chaining
When searching for a member you can either specify a single sublibrary or a chain
of sublibraries. A search chain allows you to search several sublibraries when
retrieving members of the predefined types PHASE, OBJ, SOURCE and PROC.
The sublibraries specified in a search chain may be part of one or more libraries.
Also, a particular sublibrary may appear in the search chains of any or all partitions.

A search chain is established through a list of sublibrary names, qualified by library
names corresponding to file names in DLBL statements. DLBL and EXTENT
information and Librarian DEFINE commands must be entered before the LIBDEF
statement is processed. Refer to the following example:

 Chapter 4. Using VSE Libraries 105

 Using VSE Libraries

// DLBL MYLIB,...
// EXTENT ,111111,...
// DLBL YOURLIB,...
// EXTENT ,222222,...
 .
 .
// EXEC LIBR
DEFINE LIB=MYLIB YOURLIB
DEFINE SUBLIB=MYLIB.MYSUB1 YOURLIB.YSUB1
/\
 .
 .
// LIBDEF PHASE,SEARCH=(MYLIB.MSUB1,YOURLIB.YSUB1)

When requested to fetch or load a phase, the system searches first sublibraries
MYLIB.MSUB1 and YOURLIB.YSUB1 and finally the system sublibrary
IJSYSRS.SYSLIB. The system always adds IJSYSRS.SYSLIB at the end of a
search chain, unless you specify it explicitly somewhere else in the chain.

You can also establish a single search chain for all member types (PHASE, OBJ,
SOURCE and PROC.) For this purpose, use the character * as member type
specification. For example:

// LIBDEF \,SEARCH=(MYLIB.MSUB1,YOURLIB.YSUB1,OURLIB.OSUB1)

Again, if a member is not found in the sublibraries defined, IJSYSRS.SYSLIB is
searched as well.

Permanent versus Temporary Library Access Definitions
A library access definition specified as TEMP is valid only for the job in which it is
submitted. TEMP is also the default. A permanent library access definition specified
as PERM is valid for the partition in which it is submitted until:

that partition is deactivated via the UNBATCH command, or
a new permanent LIBDEF statement overrides the existing one, or
a LIBDROP statement is entered. In this case, the default search chain
becomes active.

For example:

// LIBDEF OBJ,SEARCH=(YOURLIB.YSUB,OURLIB.OSUB1),PERM

would be overridden by;

// LIBDEF OBJ,SEARCH=(HISLIB.HSUB,HERLIB.HSUB1),PERM

The default search chain for OBJ-type members would be activated by:

// LIBDROP OBJ,SEARCH,PERM

If both a temporary and permanent definition exist, the following rules apply:

� For SEARCH, the TEMP search chain is logically placed before the PERM
search chain, and both are searched until the member is found.

� For CATALOG, the TEMP library definition is used.

106 IBM VSE/ESA Guide to System Functions

 Using VSE Libraries

In any search chain you can specify up to 15 sublibraries. For each partition you
can specify a permanent chain of up to 15 sublibraries and a temporary chain (per
job) of up to 15 sublibraries. If you specify SDL and/or IJSYSRS.SYSLIB explicitly
in a chain, this number is reduced to 13 or 14, respectively.

You can cancel a library access definition explicitly at any time by using the
LIBDROP statement. This may be necessary, for example, when you want to delete
a sublibrary from partition F1 when it is specified in a search chain in partition F2.
In this case, you would enter in partition F2:

// LIBDROP \,SEARCH

The Search Sequence for Phases
A search chain for member type PHASE always includes the system directory list
(SDL). The search sequence is different for $- and non-$ phases:

� non-$ phases: SDL → TEMP-chain → PERM-chain → IJSYSRS.SYSLIB

� $ phases: SDL → IJSYSRS.SYSLIB → TEMP-chain → PERM-chain

For further details, refer to the description of the LIBDEF statement in the manual
VSE/ESA System Control Statements under “LIBDEF”.

The following example shows a Linkage Editor job stream. Permanent and
temporary library access definitions are used. It is assumed that DLBL, EXTENT
and DEFINE statements have been given for the specified libraries and
sublibraries.

Permanent definitions in partition F1
 LIBDEF PHASE,CATALOG=YOURLIB.YSUB1,PERM
 LIBDEF OBJ,SEARCH=(MYLIB.MSUB1,MYLIB.MSUB2),PERM

Job stream submitted in partition F1:
// JOB LINKEDIT

 LIBDEF PHASE,CATALOG=HERLIB.HERSUB1,TEMP
 LIBDEF OBJ,SEARCH=HISLIB.HISSUB1,TEMP
// OPTION CATAL

 PHASE....
 INCLUDE
// EXEC LNKEDT

 /&

In this job stream the temporary LIBDEF for cataloging overrides the permanent
one, that is, the link-edited phase is cataloged in sublibrary HERSUB1.

The search chain for the object module(s) to be link-edited is extended by the
temporary definition, which is put in front of the permanent definition. Thus, the
search chain used looks as follows:

HISLIB.HISSUB1,MYLIB.MYSUB1,MYLIB.MYSUB2,IJSYSRS.SYSLIB

(The system sublibrary is added by default.) If your installation includes access
control protected libraries or sublibraries that are to be included in search chains
the following restrictions must be observed:

 Chapter 4. Using VSE Libraries 107

 Using VSE Libraries

� Private libraries and sublibraries must be protected with a universal access right
(UACC) if you want them included in a permanent search chain. In addition,
they may be protected on an individual user basis (ACC).

� Private sublibraries that are to be included in a temporary chain may be
protected with UACC or ACC or both.

All access rights are allowed.

Resetting a Library Access Definition
The LIBDROP statement entered in any partition cancels a library access definition
that was established previously for the same partition by a LIBDEF statement. For
example:

// LIBDEF OBJ,SEARCH=(YOURLIB.YSUB1,OURLIB.OSUB1),-
 CATALOG=OURLIB.OSUB2,PERM

is reset by

// LIBDROP OBJ,PERM

A library access definition is also reset when a new permanent LIBDEF statement
overrides the existing definition.

If not reset explicitly, all temporary library definitions will be reset at end-of-job. A
permanent library access definition is automatically canceled when the partition is
deactivated using the UNBATCH command. If a HOLD command is given before
UNBATCH, the permanent library definitions are not deactivated and are available
again when the partition is restarted. The “UNBATCH” and “HOLD” commands are
described in VSE/ESA System Control Statements

Displaying Library Access Definitions
Using the LIBLIST statement, you can request a display of the currently active
library access definitions for a particular member type. The display may show one
or all static partitions. You can direct the display to SYSLOG or to SYSLST. For
example:

// LIBLIST PHASE

causes the display of all permanent and temporary library definitions of type
PHASE for the partitions in which the statement is executed.

You may display with a single LIBLIST statement all library access definitions,
temporary and permanent, for all member types and for all static partitions. For
example:

// LIBLIST \,\,SYSLST

In this example, the output is printed on SYSLST.

Accessing Members Controlled by MSHP
If a sublibrary member is cataloged under MSHP (Maintain System History
Program) control, it remains under control of MSHP. This is also true for an
MSHP-controlled member that you copy (by COPY, MOVE, or
BACKUP/RESTORE) into another sublibrary.

108 IBM VSE/ESA Guide to System Functions

 Using VSE Libraries

Normally, a MSHP controlled member cannot be replaced, changed, locked, or
unlocked by the Librarian program outside the control of MSHP. However, to cope
with an emergency situation (failure of MSHP, for example), an MSHP bypass is
available. To use this bypass, code the EXEC statement for the Librarian as
follows:

// EXEC LIBR,PARM='MSHP'

You may use this bypass to copy an MSHP-controlled member, or to replace an
MSHP-controlled member in the target sublibrary. To manipulate the copied
member in the target sublibrary, you must again specify PARM='MSHP' in your
// EXEC LIBR statement.

The Librarian Program
The Librarian program provides all the functions needed to service your libraries.
The Librarian is called using an // EXEC LIBR statement followed by one or more
Librarian commands. The end of the command stream is indicated by a /* delimiter.

The Librarian program can run in any partition. To cancel the Librarian, cancel the
partition in which it is running, as with any other program.

A CANCEL command (without the FORCE parameter) for the Librarian's partition
may not take effect immediately. This is because of the “delayed cancel” function,
which causes the Librarian to complete execution of the current command before it
is terminated.

 Return Codes
After each Librarian command is executed, the Librarian sets a return code. This
indicates the success of the command,as follows:

RC: Indicates that:

0 the command was completed successfully.

2 the command was completed successfully, and a particular result was
reached (for example, TEST and COMPARE commands).

4 the command was completed, but an exceptional condition occurred, or the
requested result already existed.

8 the command was only partly executed, but the Librarian program could
continue processing.

16 a severe error occurred while processing the command. The Librarian
program terminates.

The highest return code set during the Librarian session is passed to the job control
program. Here, it can be tested by an IF or ON job control command.

 Conditional Execution
The Librarian offers the possibility of processing or omitting certain commands in
the command stream, dependent on the return codes set after each command. The
ON command compares the return code with a specified value, and causes a
branch to a label command if the result of the comparison is “true.”

 Chapter 4. Using VSE Libraries 109

 Using VSE Libraries

The /. LABEL command indicates a point in the command stream to which the
GOTO action of an ON command may refer.

The GOTO command is used to skip unconditionally to a specified label statement.

For details on these commands, see the Librarian section of the manual VSE/ESA
System Control Statements.

Examples of Conditional Command Execution
Depending on the return code set, you may want to break off the Librarian session,
or have different sets of commands executed, depending on the result of a
particular command.

For example, if a COMPARE command shows that two phases are identical, you
may want to erase one of them. If they are different, they should both be kept. The
COMPARE command issues a return code of 0 if the compared members are
identical, and a code of 2 if they are different. You could use the following
commands. (The shortest abbreviations accepted by the Librarian are used.)

// EXEC LIBR
ON $RC = 2 GOTO END
CON S=LIB1.SUB1 : LIB1.SUB2
COM PROGA.PHASE
A S=LIB1.SUB2
DEL PROGA.PHASE
/. END
/\

As another example, if a generic copy of all members from a sublibrary is only
partly executed, a return code of 8 is set. In this case, it is advisable to list the
directory of the “to” sublibrary to see which members have been copied and which
have not.

The following command stream could be used:

// EXEC LIBR
ON $RC = 8 GOTO LIST1
CON S=LIB1.SUB1 : LIB1.SUB2
COP \.\ R=YES
GOTO NEXT
/. LIST1
ON $RC = 8 GOTO LIST2
LISTD S=LIB1.SUB2
/. NEXT
CON S=LIB2.SUB3 : LIB2.SUB4
COP \.\ R=YES
GOTO END
/. LIST2
LISTD S=LIB2.SUB4
/. END
/\

110 IBM VSE/ESA Guide to System Functions

 Using VSE Libraries

 Interactive Execution
The Librarian can also be used interactively via SYSLOG. After the EXEC LIBR
command is processed, the Librarian prompts the operator to enter Librarian
commands. The end of a command sequence is indicated on SYSLOG by entering
END. The ON, GOTO and /. LABEL commands are not accepted from SYSLOG.

When the Librarian is called from SYSLOG, it directs all list output (from LIST and
LISTD commands) and all messages to SYSLOG by default. When you expect a lot
of output, it is advisable to specify SYSLST in the UNIT operand of these
commands. If, for any reason, you want to stop a listing, enter a CANCEL
command for the partition in which the Librarian is running. This will stop the listing,
but the Librarian itself will remain active in the partition.

For details on how to handle and analyze members of type DUMP refer to the
manual VSE/ESA Guide for Solving Problems under “Using Dumps for Error
Diagnosis”.

 Accessing Sublibraries
When using the Librarian you have to define the library or sublibrary to be
accessed in one of the following ways:

� As an operand of a Librarian command.

� By using the ACCESS or CONNECT command.

Examples are given when discussing the various Librarian functions.

 Generic Notation
For certain functions that handle library members you can specify member names
and member types in generic notation by using the character '*'. For example:

ABC*.OBJ is interpreted as all members of type OBJ whose names begin with
ABC.

*.OBJ is interpreted as all members of type OBJ.

. is interpreted as all members of all types.

The following Librarian commands allow generic notation:

 BACKUP
 COMPARE
 COPY
 DELETE
 LIST
 LISTDIR
 MOVE
 PUNCH
 RENAME
 RESTORE
 SEARCH
 TEST
 UNLOCK

To separate the operands of a command you may use either blanks or commas. If
a command does not fit on one input line, or if you want a certain operand on a line

 Chapter 4. Using VSE Libraries 111

 Using VSE Libraries

by itself for easier editing or update, use a hyphen (-) as a continuation character.
For example:

DEFINE LIB=MYLIB-
 YOURLIB-
 PRODLIB

 Librarian Commands
This section describes the Librarian commands as listed below. It provides
examples to show their usage.

 BACKUP
 CATALOG
 CHANGE
 COMPARE
 COPY
 DEFINE
 DELETE
 INPUT (PUNCH)
 LIST
 LISTDIR
 LOCK
 MOVE (Merge)
 PUNCH
 RELEASE
 RENAME
 RESTORE
 SEARCH
 TEST
 UNLOCK
 UPDATE

For a complete description and the syntax of each Librarian command, refer to the
manual VSE/ESA System Control Statements under “Librarian Commands”.

Backup a SYSRES File, Library, Sublibrary, or Member
By using the BACKUP command you can backup libraries, sublibraries, members,
and SYSRES files onto tape. Libraries, sublibraries and members remain
unchanged after restore, apart from an internal re-organization which removes
scattered free space and usually results in faster read access.

Note: The SYSRES file is identical to the system library IJSYSRS. IJSYSR1
through IJSYSR9 also define SYSRES files.

SYSRES files can be backed up either for an online or a stand-alone restore
run, but private libraries, sublibraries, and members for an online restore run
only. RESTORE=ONLINE is the default.

The backup command accepts unlabeled tapes or tapes with standard labels .

You can also use backup/restore runs to recover partially damaged libraries and
sublibraries. Only the intact members are backed up and can then be restored.

112 IBM VSE/ESA Guide to System Functions

 Using VSE Libraries

Note: If a damaged member is too large for the input buffers of the backup
routine, it is not skipped. In this case, the backup run is canceled by the
system. The size of the input buffer depends on the size of the partition in
which the Librarian is running, and may be up to 64K. Damaged members
larger than 64K should be deleted or renamed before backup.

To backup a library or sublibrary to a disk device, you can use the COPY
command. The COPY function also includes an internal reorganization.

Creating a Backup Tape for a Stand-Alone Restore
If RESTORE=STANDALONE is specified, the stand-alone programs and utilities
required for stand-alone restore are retrieved from the system sublibrary
(IJSYSRS.SYSLIB) of the first or only SYSRES file specified and included in the
backup tape. IJSYSR1 through IJSYSR9 define SYSRES files, IJSYSRS your
IPLed system. If no SYSRES file has been specified, the stand-alone programs and
utilities are retrieved from the SYSRES from which IPL was performed.

An exception to this rule is the stand-alone DITTO/ESA for VSE program. This
program is retrieved from sublibrary PRD1.BASE if not installed in SYSRES as the
other stand-alone programs.

The specification of a library, sublibrary, or member will be optional for the case
that the operand RESTORE=STANDALONE is specified. Thus, if no library,
sublibrary, or member operand is present on the BACKUP command, only the
stand-alone programs are written onto the output tape and the tape is positioned
behind the stand-alone utilities file.

A stand-alone backup tape can be restored online. Only SYSRES files can be
restored stand-alone. If a backup tape contains a SYSRES file for stand-alone
restore and in addition private libraries or sublibraries, these private libraries or
sublibraries must be restored online.

Note that a backup tape for a stand-alone restore need not include a SYSRES file;
the SYSRES file can be on another backup tape.

Further Considerations for Creating Backup Tapes
A history file may also be part of a backup tape. However, a history file cannot be
restored with the Librarian restore function. An MSHP INSTALL or RESTORE job is
required for this. The INSTALL function can restore both history files and libraries.

For a backup run you can use unlabeled tapes or tapes with standard labels. If the
TAPELABEL=filename operand is not specified for the BACKUP command, the
Librarian program assumes an unlabeled tape. If TAPELABEL is specified, the
"filename" must be identical to the seven character file name of the // TLBL
statement of the output tape.

The layout of the output created by a single BACKUP command is described
below. Each BACKUP command creates the same set of files. The files are
separated by tapemarks.

A single BACKUP command may be submitted with a list of libraries, sublibraries,
or members. The resulting backup file would contain all libraries, sublibraries, or
members, as specified. The sequence in which the libraries, sublibraries and

 Chapter 4. Using VSE Libraries 113

 Using VSE Libraries

members are restored depends on their position in the backup file, not on the
sequence in which they are specified in the RESTORE command.

If the backup files created by several BACKUP commands are on one tape, the
RESTORE commands must reflect the sequence of the backup files.

The output from several BACKUP commands can be written to one tape. In this
case, it is advisable for unlabeled tapes to use the ID=name operand of the
BACKUP command. This makes the restore of the required data easier. If the ID
operand is not used, the backup tape must be repositioned “manually,” using MTC
commands. With an ID operand, all you have to do at restore is to specify the
appropriate name, and the Librarian finds the correct backup file automatically.

Note: The backup tape is not rewound automatically before or after a BACKUP
command is executed.

However, if RESTORE=STANDALONE is specified in the BACKUP command, the
Librarian rewinds the output tape before output begins. This is because the
stand-alone programs must be at the beginning of the tape.

For details about tape positioning refer to “Tape Positioning” on page 117.

Layout of an Online Tape
An unlabeled online tape created with a single BACKUP command
(RESTORE=ONLINE) contains the files described below. A labeled tape includes in
addition a header and a trailer; refer also to Figure 39 on page 119.

File 1: This file is ignored for restore. It may be empty or contain user information.
To be included on the backup tape, this information must be stored in a library
member in card image format, that is, the record length must be 80 bytes. The
library member is to be specified in the BACKUP command (with the HEADER=
operand).

File 2: File 2 consists of a backup file identification and, optionally, the system
history File.

The file identification simplifies later restoring of an unlabeled tape if more than one
backup file is written on the tape. The identification must be alphanumeric and can
be 1 to 16 characters long. If a backup of the system history file is requested it is
also part of this file.

File 3 (Backup file): Contains the libraries, sublibraries, or members requested for
backup.

If the space of a single tape volume is not sufficient, a multivolume backup tape is
created; alternate tape drive assignment is supported.

Layout of a Stand-Alone Tape
The output produced by the Librarian BACKUP command with the
RESTORE=STANDALONE parameter is a single-volume or multi-volume file
consisting of 4 files separated by tapemarks. The first 2 files on the stand-alone
tape are the stand-alone IPL file and the stand-alone utility file. These 2 files must
reside completely on the first tape volume. The remaining 2 files are optional.

A labeled tape includes in addition a header and a trailer.

114 IBM VSE/ESA Guide to System Functions

 Using VSE Libraries

File 1: Contains a header file and stand-alone programs. The header file is optional
and and may be used by IBM for system information. If you specify your own
header file, it must contain IPL bootstrap records for tape. The stand-alone
programs include:

� IPL bootstrap phases.

� The console support phase.

� The VSE/ESA supervisor.

� Further IPL programs.

� A load list of the SVA programs needed in the stand-alone environment.

File 2: Contains the stand-alone utility file including (in the order as specified in the
SVA load list: $SVASA) the SVA programs required in the stand-alone
environment. This file includes:

� The stand-alone RESTORE program (LIBSARE).

� The VSE/Fast Copy program (FCOPY).

� The ICKDSF (Device Support Facilities) program.

� The DITTO/ESA for VSE program.

The presence of these programs is optional, but the file must include at least one of
them.

File 3: As file 2 of online tape.

File 4: As file 3 of online tape.

The output from a BACKUP command with RESTORE=STANDALONE must be at
the start of a tape. The output of any following BACKUP commands with
RESTORE=ONLINE may be written to the same tape. The unlabeled tape will then
contain 4 files of a stand-alone backup, 3 files of an online backup, another 3 files
of an online backup, and so on.

At the end of the backup tape, the Librarian writes a null file, a file containing an
end-of-backup record, and another null file.

Note: If you create a labeled tape for RESTORE=STANDALONE, the program
issues message L127I. The message warns you that standard header
labels exist and must be skipped for initial program load (IPL) of the tape
(they are skipped by repetitive IPLs until the restore program finds the first
record of the load program).

You can avoid message L127I if you create a separate IPL tape containing only the
stand-alone programs. To do this, perform a backup run with an unlabeled tape for
stand-alone restore (BACKUP ... RESTORE=STANDALONE ...) and do not specify any
library, sublibrary, or member.

You can use this tape later on for initial program load (IPL) of the restore program
and have the program read a separate backup tape with a SYSRES file as input for
the stand-alone restore run.

 Chapter 4. Using VSE Libraries 115

 Using VSE Libraries

Examples of BACKUP Jobs
Example 1: The following job performs a backup of SYSRES file IJSYSR1, library
YOURLIB, and sublibrary MYLIB.MSUB1, each preceded by the backup file-ID
specified. The default RESTORE=ONLINE is in effect:

// JOB BACKUP
// EXEC LIBR
BACKUP LIB=IJSYSR1,TAPE=181,ID=BA1
BACKUP LIB=YOURLIB,TAPE=181,ID=BA3
BACKUP SUBLIB=MYLIB.MSUB1,TAPE=181,ID=BA4
/\
/&

For the corresponding restore job stream refer to “Restore a SYSRES file, Library,
or Sublibrary” later in this section.

Example 2: Assume that you want to backup the IPLed SYSRES file, the history
file, and restore the backup tape stand-alone. This would require the following job
stream (for an unlabeled tape):

// JOB BACKUP
// EXEC LIBR
BACKUP LIB=IJSYSRS,TAPE=181,RESTORE=STANDALONE, -
 INCLUDE=HISTORY
/\
/&

The Librarian retrieves the programs and data that go into file 1 and 2 of the
backup tape from IJSYSRS.SYSLIB; DITTO/ESA for VSE from PRD1.BASE if not
found in IJSYSRS.SYSLIB.

This is followed by the history file which is stored as part of file 3 on the backup
tape.

Finally, the system library IJSYSRS, the actual backup file (file 4), is copied to the
backup tape.

Example 3: The following job stream creates a backup copy of library MYLIB on a
labeled tape. TL1 is the file name assumed:

// JOB BACKUP
// TLBL TL1, ...
// MTC REW,181
// EXEC LIBR
BACKUP LIB=MYLIB TAPE=181 TAPELABEL=TL1
/\
/&

Note: The ID operand is not used in this example. The ID operand is mainly used
for unlabeled tapes; for labeled tapes only if an additional check is to be
performed.

Example 4: The following job stream creates backup copies of selected library
members:

116 IBM VSE/ESA Guide to System Functions

 Using VSE Libraries

// JOB BACKUP
// EXEC LIBR
BACKUP MYLIB.MSUB1.M\.OBJ-

MYLIB.MSUB1.M\.S\ TAPE=181 ID=MB1
BACKUP MYLIB.MSUB1.MYPHASE.PHASE-
 TAPE=181 ID=MB2
/\
/&

The first BACKUP statement selects members for backup through generic member
specification. The second BACKUP statement selects a single member for backup.

Multiple Backups on One Tape: When the last BACKUP command addressing a
particular tape has been executed, the Librarian writes End-of-Backup-Tape records
for both, labeled and unlabeled tapes. When these are reached during a restore
run, the RESTORE function stops searching for the specified backup file-ID.

If the remainder of the same tape is to be used for further backups, these
End-of-Backup-Tape records must be overwritten. This can be done for unlabeled
tapes as follows:

� Mount the partly-used backup tape.

� Issue a RESTORE command, specifying this tape and a backup file-ID which
does not exist on the tape:

RES \ TAPE=cuu SCAN=YES ID=XXXX

(SCAN=YES prevents a restore taking place if the specified ID does exist after
all).

� The Librarian searches the tape for the specified file-ID, does not find it, and
positions the tape behind the last existing file.

� Issue the desired BACKUP command or commands.

 Tape Positioning
To a certain extent, tape positioning is done automatically. For a selective restore,
additional tape positioning control on your part may be necessary if you have
labeled tapes and multiple backups on a single tape.

Positioning for an Online Tape

No tape rewind is done at the beginning or end of a BACKUP or RESTORE run.

� Positioning after BACKUP

An unlabeled online tape is positioned behind the backup file, a labeled online
tape behind the trailer label.

� Positioning after RESTORE

After a non-selective restore, the tape is positioned immediately behind the
trailer label (labeled tape). For an unlabeled tape or after a selective restore,
the tape is positioned within the currently processed backup file, immediately
behind the restored object.

Positioning for a Stand-Alone Tape

For the BACKUP run, a tape rewind is done at the beginning.

 Chapter 4. Using VSE Libraries 117

 Using VSE Libraries

For the RESTORE run, a tape rewind is done at the beginning if either of the
following is true:

1. The initial program-load address is different from the address of the tape.

2. The backup tape is labeled and the labels are to be processed.

Further positioning characteristics:

� Positioning after BACKUP

An unlabeled stand-alone tape is positioned behind the backup file, a labeled
stand-alone tape behind the trailer label.

Note: If no history file and no backup file are written to tape, a stand-alone
tape is positioned behind the stand-alone utility file. In this case, no
trailer label is written for a labeled output tape. Thus, on completion of
the Librarian BACKUP command, a VSE/Fast Copy dump may be
written to the same tape.

� Positioning after stand-alone IPL

On completion of IPL, the stand-alone tape is positioned behind the
stand-alone utility file for further processing by a stand-alone Librarian
RESTORE or stand-alone VSE/Fast Copy.

� Positioning after RESTORE

A stand-alone Librarian RESTORE positions the tape, (except for a selective
restore) behind the restored file (unlabeled tape) or behind the trailer label
(labeled tape).

After a selective restore, that is, if a backup file contains several IJSYSRx
libraries and the last one of these libraries is not restored, the tape remains
positioned behind the IJSYSRx that has been restored.

User-Controlled Positioning

You may have a need for this if you do a selective restore; for example, of one or
more library objects out of a number of such objects stored on your labeled backup
tape, or of a complete backup file if two or more such files are stored on the tape.

To properly control the positioning of a labeled tape, you should know how your
backup data is stored on the tape. This is shown for an online tape in Figure 39 on
page 119 for one backup file. Figure 39 shows, in addition, where the tape is
positioned at the end of a selective restore.

118 IBM VSE/ESA Guide to System Functions

 Using VSE Libraries

Figure 39. Tape Positioning at End of a Selective Restore for a Labeled Online Tape

Catalog a Member
With this function you can catalog members of any type (except of the types DUMP
and PHASE), or of a predefined source-type and of any user-defined member type.

Note:

It is not possible to replace locked members through cataloging. You must
unlock the member first (UNLOCK command) before you can replace it
through a CATALOG command. Refer also to “Librarian Handling of
IGNLOCK” on page 142.

A time stamp is used to indicate for each member when it was cataloged for the
first time and also when it was replaced last. The time stamp information can be
displayed with the LISTDIR command.

A member of type PHASE is cataloged by the Linkage Editor. For cataloging
phases refer to the description of the Linkage Editor earlier in this chapter.

 Chapter 4. Using VSE Libraries 119

 Using VSE Libraries

Cataloging Source Books
As member type for source books the following single characters are allowed: A
through Z, 0 through 9, #, $, and @.

The following letters are reserved for IBM programs:

A -- is the member type for assembler source code and source macro definitions.

B -- is the member type for network definition source code for VTAM.

C -- is the member type for COBOL source code.

D -- is the member type for alternate assembler copy source code. It contains
non-edited macros and copy books for programs that are to be executed in a
telecommunications network control unit.

E -- is the member type for assembler macros. These may be IBM-supplied or
user-written macro definitions in an edited (partially processed) format (also
referred to as E-Deck).

Since the DOS/VSE Assembler has been replaced by the High Level
Assembler, you can no longer create E-Decks. However, you can process
existing E-Decks with the High Level Assembler (see also note below).

F -- is the member type for alternate assembler macros. IBM uses it to distribute
edited macros for use by programs that are to be executed in a
telecommunications network control unit.

P -- is the member type for PL/I source code.

R -- is the member type for RPG II source code.

Z -- is the member type for sample programs supplied by IBM.

Note: For member types A and E further details are provided under “Processing
Macros with the ESERV Program” on page 173 and “Using the High Level
Assembler Library Exit for Processing E-Decks” on page 174.

The remaining reserved characters (G, H, I) are used by IBM for future additions.
You should avoid, wherever possible, using one of the reserved member types. If
you have to use such a member type ensure that you do not use duplicate names.

Assume that you want to catalog source code into sublibrary YSUB1 which is part
of library YOURLIB. The membername is YBOOK1, the member type has been
defined as L. An existing member of the same name and type is to be deleted.
The job stream would then look as follows:

// JOB CATSOURCE
// EXEC LIBR

(1) ACCESS SUBL=YOURLIB.YSUB1
(2) CATALOG YBOOK1.L REPLACE=YES
 ...
 ...
 source statements
 ...
 ...
 /+
 /\
 /&

120 IBM VSE/ESA Guide to System Functions

 Using VSE Libraries

(1) The ACCESS command defines the sublibrary to be accessed.

(2) The CATALOG statement specifies member name and member type, and that
the old version of that member (same member name, same member type), is to
be replaced.

(3) /+ indicates the end of the source code.

Instead of the EOD specification BKEND statements may be used as in pre-Version
2 releases of VSE/Advanced Functions (a release available before VSE/SP and
VSE/ESA). Edited macro definitions that are to be cataloged with member type E
may be preceded by a MACRO statement and followed by a MEND statement (as
in pre-Version 2 releases of VSE/Advanced Functions). The /+ delimiter is not
needed when BKEND or MEND is used.

Cataloging Object Modules
To catalog an object module into a sublibrary (as input for the Linkage Editor) you
have to submit the object modules on SYSIPT immediately behind the CATALOG
command, if the object modules are available as card deck. The following job
catalogs two object modules, named YMOD13 and YMOD14 into sublibrary
YOURLIB.YSUB2.

// JOB CATOBJ
// EXEC LIBR

(1) ACCESS SUBLIB=YOURLIB.YSUB2
(2) CATALOG YMOD13.OBJ
 ...
 ...

object module YMOD13
 ...
 ...
(3) /+
(2) CATALOG YMOD14.OBJ
 ...
 ...

object module YMOD14
 ...
 ...
(3) /+
 /\
 /&

(1) The ACCESS command defines the sublibrary in which the modules are to be
stored.

(2) The CATALOG command defines the names under which the object modules
are to be stored in the sublibrary.

(3) The EOD indication can, but need not, be specified for the module since the
end is indicated by an END statement generated by the compiler.

You may compile or assemble a program and catalog the resulting object module in
a sublibrary in the same job stream. For that purpose you assign SYSPCH, which
receives the output of the language translator, to a disk, diskette, or tape and then
use the object module on that device as input for your catalog run. An example
using a magnetic tape for SYSPCH is shown below. In order to assign SYSPCH to
a disk or diskette, you must in addition supply the necessary DLBL and EXTENT

 Chapter 4. Using VSE Libraries 121

 Using VSE Libraries

job control statements and the CLOSE job control command, because // RESET
SYSPCH does not work on disk or diskette devices.

// JOB SOURCE
// OPTION DECK

(1) // ASSGN SYSPCH,38ð
(2) // MTC REW,SYSPCH

// EXEC ASMA9ð....
(3) PUNCH 'CATALOG YMOD13.OBJ REPLACE=YES'
 ...
 ...
(4) source statements
 ...
 ...
 /\
(5) // MTC WTM,SYSPCH,2
(6) // MTC REW,SYSPCH
(7) // RESET SYSPCH
(8) // ASSGN SYSIPT,38ð
(9) // EXEC LIBR,PARM='ACCESS SUBLIB=YOURLIB.YSUB2'
 /&

Note: The statement

// EXEC ASMA9ð....

 calls the High Level Assembler. Refer to “High Level Assembler
Considerations” on page 174 for further details.

(1) A magnetic tape device is assigned to SYSPCH to receive the assembler
output.

(2) Rewinds the tape to its load point.

(3) Causes the assembler to write a CATALOG statement in the requested format
on SYSPCH in front of the object module.

(4) The assembler processes the source statements submitted and writes the
object module on SYSPCH.

(5) Writes tape-marks on SYSPCH to indicate the end of the object module.

(6) Rewinds the tape to its load point.

(7) The tape is unassigned as SYSPCH.

(8) The tape is assigned as SYSIPT to serve as input for the Librarian.

(9) The Librarian catalogs the object module using SYSIPT as input. The
Librarian reads as the first record the CATALOG command created by the
assembler. The remaining information needed by the Librarian, the sublibrary
name, is provided in the EXEC statement. Since the Librarian reads its input
from SYSIPT, an ACCESS command (which is read from SYSRDR) cannot
be used to specify the sublibrary name.

122 IBM VSE/ESA Guide to System Functions

 Using VSE Libraries

Cataloging Multiple Object Modules
You can catalog several object modules as one library member (a multiple-object
file) into a sublibrary. The following job stream catalogs a multiple-object file as a
single library member:

\ $$ JNM=CATALOG,CLASS=ð
// JOB CATALOG EXAMPLE
// EXEC LIBR,PARM='MSHP'

 ACCESS S=TESTLIB.S1
CATALOG EXAMPLE.OBJ REP=YES EOD=/+

 ESD INLPCAT INLPQNAM INLPMSG
ESD INLPREAD INLPCACK INLPEXIT

 ESD INLPGST INLPGSTI INLCCOMR
 TXT åðð INLPCAT C55ðII412711637°Ö} { × &};
 TXT ½ ¤ ¤Ú"
 TXT µ
 RLD U Y Ö ð
 RLD Ü \
(1) END
 ESD SVASL ½
 TXT °Ö} { ë } ì ì K A¡& {&& oØ

TXT qx%ìð {ìð1}ìðð Õ Lì\} q } ÚASSEMBLE
 TXT LIBDEF
(2) END
(3) /+
 /\
 /&

\ $$\ EOJ

(1) End of first module
(2) End of second module
(3) End of multiple-object file

As shown in the job stream, you need one Librarian CATALOG command to
catalog several object modules. This command recognizes the end of an object
module by reading the END statement. The END statement must be the last
statement in a single object module. The END statement processing recognizes
that the “end of catalog” condition is true only if the card following the END is not a
valid object statement. Valid object cards are records starting with X'02' in the first
column (ESD, TXT, RLD, and END).

 Cataloging Procedures
A cataloged procedure may contain control statements and data.

The end of the control statements to be cataloged must be indicated by an
end-of-data (EOD) delimiter.

The default value for the EOD delimiter is /+. If the procedure to be cataloged
contains this combination, an alternate EOD delimiter must be defined to the
Librarian program. This is defined in the EOD operand of the CATALOG command.
The EOD delimiter must not contain commas, blanks, or /*, and must be specified
in columns 1 and 2 of the input line following the last member record. Only the
EOD characters indicate the end of the member. Any other input data is considered
part of the member, including /* and /&; The following job stream catalogs a
procedure with the name YPROC11 into sublibrary YSUB3:

 Chapter 4. Using VSE Libraries 123

 Using VSE Libraries

// JOB CATPROC
// EXEC LIBR

 ACCESS SUBL=YOURLIB.YSUB3
(1) CATALOG YPROC11.PROC
 ...
 ...
 control statements
 ...
 ...
(2) /+
 /\
 /&

(1) No EOD is explicitly specified since the default /+ is used. Since the
REPLACE parameter is not specified explicitly, REPLACE=NO is assumed.
This means that if a procedure of the same name is already existing in the
sublibrary the new procedure is not cataloged.

(2) End-of-Data indication.

The name of a procedure can be related to the partition in which the procedure is
intended to be run. For details, see “Cataloging Partition-Related Procedures” on
page 84.

The presence of SYSIPT data must be indicated to the Librarian program by
specifying DATA=YES in the CATALOG command. In addition, you must indicate
the end of inline data by the /* statement. The following example catalogs a
partition related procedure for the BG partition consisting of control statements and
SYSIPT data:

// JOB CAT
// EXEC LIBR

(1) ACCESS SUBL=YOURLIB.YSUB3
(2) CATALOG $ðYPROC1.PROC DATA=YES
 ...
 ...
 control statements
 ...

// EXEC PAYROLL
 ...

data for program PAYROLL (SYSIPT data)
 ...
 ...
(3) /\
 ...
 ...
 control statements
 ...
 ...
(4) /+
 /\
 /&

(1) Defines the sublibrary in which the procedure is to be cataloged.

(2) The CATALOG command defines the procedure as BG procedure and
indicates that SYSIPT data is included.

124 IBM VSE/ESA Guide to System Functions

 Using VSE Libraries

(3) SYSIPT data usually follows an // EXEC statement in the procedure and is
followed by /*.

(4) The end of the procedure to be cataloged is indicated by /+.

Cataloging Members with a User-Defined Member Type
You can catalog any kind of user data and assign your own member type to it. This
type of data can be handled and manipulated with the Librarian functions. For
example, it can be copied, compared, punched, and listed.

Refer also to “Rename a Sublibrary or a Member” on page 146.

Restrictions when Cataloging Procedures
1. If the cataloged procedure, for example an ASI JCL procedure, includes the

// JOB statement, there must be no other JOB statement active in the partition
when you retrieve the procedure through the EXEC statement.

2. In a procedure, the job control program recognizes any /+ as an
end-of-procedure, and terminates processing of the current procedure.

Change the Reuse Attribute of a Sublibrary
If a sublibrary is defined with REUSE=AUTOMATIC, or the REUSE operand is
omitted, it is possible to switch to immediate space reclamation using the Librarian
CHANGE command.

Remember that the CHANGE command and the REUSE operand of the DEFINE
affect only sublibraries, whereas the RELEASE command affects libraries or
sublibraries.

Note: This command must be used carefully. See also “Release Space for a
Library or Sublibrary” on page 145.

Compare Libraries, Sublibraries, or Members
 With the COMPARE command you can compare libraries, sublibraries, and
members. The comparison can be based either on directory information or on the
member contents. For example:

// JOB COMPARE
// EXEC LIBR

(1) COMPARE LIB=YOURLIB:MYLIB
(2) COMPARE SUBL=OURLIB.OSUB2:MYLIB.MSUB3,PUNCH=YES
(3) CONNECT SUBL=YOURLIB.YSUB3:MYLIB.MSUB1
(4) COMPARE AB\.OBJ PUNCH=YES
(5) CONNECT SUBL=YOURLIB.YSUB2:=.YSUB3
(6) COMPARE PRINTXA6.L,PRINTXA7.L,DATA=MEMBER
(7) CONNECT SUBL=YOURLIB.YSUB2:=.=
(8) COMPARE PRINTXAA.L:PRINTXBB.L DATA=MEMBER
 /\
 /&

(1) Library YOURLIB is compared with library MYLIB. Since the DATA parameter
is not explicitly specified the default DATA=DIRECTORY is in effect. As a
result, the names and types of all members that reside in YOURLIB but not in
MYLIB are printed on SYSLST.

 Chapter 4. Using VSE Libraries 125

 Using VSE Libraries

(2) Sublibrary OURLIB.OSUB2 is compared with sublibrary MYLIB.MSUB3.
Because the DATA parameter is not explicitly specified, the default
DATA=DIRECTORY is in effect. As a result, the names and types of all
members that reside in OURLIB.OSUB2 but not in MYLIB.MSUB3 are printed
on SYSLST. In addition, because PUNCH=YES is specified, a COPY
command is created on SYSPCH with the names of the members printed on
SYSLST as operands. An end-of-file indication completes the output on
SYSPCH. The COPY command created can be used to copy the members
missing in MYLIB.MSUB3 from OURLIB.OSUB2 into MYLIB.MSUB3.

PUNCH=YES can only be used in connection with DATA=DIRECTORY.

(3) When comparing members, the sublibraries to be accessed,
YOURLIB.YSUB3 and MYLIB.MSUB1, must be specified in a preceding
CONNECT command.

(4) Since the DATA parameter is not explicitly specified, the default
DATA=DIRECTORY is in effect. As a result, the names of all object modules
that begin with 'AB' and reside in YOURLIB.YSUB3 but not in MYLIB.MSUB1
are printed on SYSLST. For PUNCH=YES refer to (2).

(5) Refer to (3). Character '=' can be used since the library is the same as in the
first operand.

(6) DATA=MEMBER causes the member contents to be compared, record by
record. Source book PRINTXA6.L in YOURLIB.YSUB2 is compared with the
source book of the same name in YOURLIIB.YSUB3. The same is done with
source book PRINTXA7.L. After the first mismatch, comparing is stopped for
that specific member and the records causing the mismatch are printed on
SYSLST. Comparing continues with the next member.

(7) Refer to (3). Character '=' can be used since the sublibrary is the same as in
the first operand.

(8) Source books PRINTXAA and PRINTXBB are compared. Both reside in
sublibrary YSUB2. After the first mismatch, comparing is stopped for that
specific member and the records causing the mismatch are printed on
SYSLST.

Copy or Move a Library, Sublibrary or Member
With the COPY or MOVE command you can copy or move libraries, sublibraries
and members. These operations can be performed between any supported disk
devices.

Note: For details about the locking function in connection with the COPY and
MOVE commands, refer also to “Locking Rules” on page 141 and “Librarian
Handling of IGNLOCK” on page 142.

In any copy or move operation there are always two libraries or sublibraries
involved which might be identical. Data is copied or moved from one library or
sublibrary into another one. These are referred to as 'from-library' and 'to-library' or
as 'from-sublibrary' and 'to-sublibrary'.

The functions of the MOVE and COPY commands are similar, except that the
MOVE command causes the moved data to be deleted from the 'from-' library or
sublibrary.

Following is a description of COPY operations.

126 IBM VSE/ESA Guide to System Functions

 Using VSE Libraries

Copying Libraries and Sublibraries
You can either copy complete libraries or select particular sublibraries for copying.
For example:

// JOB COPY LIB/SUBLIB
// EXEC LIBR

(1) COPY LIB=YOURLIB:MYLIB REPLACE=YES LIST=YES
(2) COPY SUBL=YOURLIB.YSUB1:OURLIB.OSUB4 -
 MYLIB.MSUB1:OURLIB.=
 /\
 /&

(1) All sublibraries of library YOURLIB are copied into library MYLIB, which must
already exist.

REPLACE=YES indicates to the Librarian to replace sublibraries with the
same name already existing in MYLIB with the copied version from YOURLIB.
With REPLACE=NO, which is the default, a sublibrary is only copied if it does
not already exist in the to-library.

Note: A sublibrary will be replaced only if it does not include locked
members. In the example, TLOCK is not specified which means that
the default TLOCK=NORMAL is active and the COPY command does
not update the sublibrary if it includes locked members. See also the
following example for copying members.

With LIST=YES a printout is produced on SYSLST which lists the names and
types of all members copied together with the corresponding from/to libraries
and sublibraries.

(2) Sublibrary YSUB1 of library YOURLIB is copied into library OURLIB and
named OURLIB.OSUB4, and sublibrary MSUB1 of library MYLIB is also
copied into library OURLIB with the name OURLIB.MSUB1. If a library or
sublibrary name is the same for the 'from' and 'to' specification you can use
the character '=' to indicate that.

Since the default REPLACE=NO is in effect, copying is only done if a
sublibrary of the same name does not already exist in the to-library.

Since the default LIST=NO is in effect, no printout is produced.

 Copying Members
When copying members you have to use in addition the CONNECT command to
specify the sublibraries to be accessed. For example:

// JOB COPY MEMBERS
// EXEC LIBR

(1) CONNECT SUBL=YOURLIB.YSUB1:=.YSUB6
(1) COPY VERFY8.PHASE,VERFY9.PHASE,VERFA1.OBJ, -
 REPLACE=YES
(2) CONNECT SUBL=YOURLIB.YSUB2:MYLIB.MSUB4
(2) COPY AB\.PHASE,BC\.\,LIST=YES
(3) CONNECT SUBL=YOURLIB.YSUB2:=.=
(3) COPY A.A:A.B TLOCK=COPY REPLACE=YES
 /\
 /&

 Chapter 4. Using VSE Libraries 127

 Using VSE Libraries

(1) The library members VERFY8.PHASE, VERFY9.PHASE and VERFA1.OBJ
are copied from sublibrary YSUB1 into sublibrary YSUB6. Since YSUB6 is
also part of library YOURLIB the character '=' can be used as library
indication.

If library members of the same name and type do already exist in
YOURLIB.YSUB6 they are replaced by the copies from YOURLIB.YSUB1
because REPLACE=YES is specified.

(2) Copying is to be performed from sublibrary YOURLIB.YSUB2 into sublibrary
MYLIB.MSUB4.

All phases whose names begin with 'AB' are copied from YSUB2 into MSUB4.
In addition, all members of any type whose names begin with 'BC' are also
copied from YOURLIB.YSUB2 into MYLIB.MSUB4.

Since REPLACE=NO is in effect no copying is performed if a member of the
same name and type already exists in MYLIB.MSUB4.

Since LIST=YES is specified a printout is produced on SYSLST which lists
the names and types of all members copied, together with the corresponding
from/to libraries and sublibraries. Such a printout is especially useful when
specifying the members to be copied in generic format as in this example.

(3) In this copying example, the from-sublibrary and the to-sublibrary are
identical. Member A.A will be copied to A.B. in YOURLIB.YSUB2 and
replaces member A.B if it exists and even if it is locked. This is indicated by
REPLACE=YES and TLOCK=COPY. If A.A is locked, the locking information
will be copied to A.B, because TLOCK=COPY was specified. In this case, A.B
will be locked with the same lockid as A.A after copying has been completed.

Moving Libraries, Sublibraries, and Members
The MOVE command, like the COPY command, places a copy of the specified
sublibrary or member of the from-library or sublibrary into the to-library or
sublibrary, respectively. However, the sublibrary or member which has been moved
is deleted from the from-library. The same operands are used as for the COPY
command. Running the above job streams with the MOVE command instead of the
COPY command would yield the same result, except that the entities which are
moved are deleted from the source.

If the from-member is locked, the MOVE operation will bypass this member.

Since a move operation always includes a delete operation, it is not performed if
conditions exist such as the following:

� The from-sublibrary is defined in a LIBDEF statement.

� The from-sublibrary is being accessed by another VSE partition at the same
time.

� The from-sublibrary contains locked members.

128 IBM VSE/ESA Guide to System Functions

 Using VSE Libraries

Merging Two Sublibraries
There is no MERGE command in the Librarian command set. To merge two
sublibraries, use a CONNECT command followed by a COPY or MOVE command
with generic member specification. Using the COPY command leaves the
from-sublibrary as it was; the MOVE command causes members to be deleted from
the from-sublibrary.

To merge, for example, two sublibraries named LIB1.SUBA and LIB2.SUBB, submit
the following Librarian job:

// JOB MERGE
// EXEC LIBR
CONNECT LIB1.SUBA : LIB2.SUBB
COPY \.\
/\
/&

LIB2.SUBB will now contain all the members it contained before, plus any members
of different names and types which were in LIB1.SUBA. LIB1.SUBA remains
unchanged.

If members of the same name and type existed in both sublibraries before the copy
(for example, LIB1.SUBA.PAY.PROC and LIB2.SUBB.PAY.PROC), the version
already present in LIB2.SUBB is kept. If the LIB1.SUBA versions of duplicate
members are to be kept in the merged sublibrary, simply turn the CONNECT
command in the example around:

CONNECT LIB2.SUBB : LIB1.SUBA

However, you may want to have the LIB1.SUBA versions of the duplicate members
in the merged sublibrary and keep LIB1.SUBA unchanged. In this case, you would
submit the job:

// JOB MERGE
// EXEC LIBR
CONNECT LIB1.SUBA : LIB2.SUBB
COPY \.\ REPLACE=YES
/\
/&

In the example job shown above, you can enter a MOVE command in place of the
COPY. The command:

MOVE \.\

would leave only the members with duplicate names in LIB1.SUBA. The command:

MOVE \.\ REPLACE=YES

would empty LIB1.SUBA, with its version of the duplicate members in LIB2.SUBB.

For details of the “CONNECT”, “COPY” and “MOVE” commands, see the manual
VSE/ESA System Control Statements.

 Chapter 4. Using VSE Libraries 129

 Using VSE Libraries

Define a Library, Sublibrary, or a SYSRES File
For details, refer to “Defining a Library, Sublibrary, or a SYSRES File” on
page 102.

Delete a Library, Sublibrary, or a Member
With the DELETE command you can delete libraries, sublibraries, or members.

Note: For details about the locking function in connection with the DELETE
command, refer also to “Librarian Handling of IGNLOCK” on page 142 and
“Locking Rules” on page 141.

 Deleting Libraries
If the library to be deleted is specified in a LIBDEF statement, that LIBDEF
statement must be dropped (LIBDROP statement) or changed before the library is
deleted. If a library contains locked members, these members must first be
UNLOCKED before the library can be deleted. You may delete one or more
libraries with a single DELETE command:

// JOB DELETE LIB
// EXEC LIBR
DELETE LIB=YOURLIB MYLIB
/\
/&

Libraries YOURLIB and MYLIB are deleted when this job stream is run. That is, the
corresponding VTOC entries are deleted. IJSYSRS, the system library, cannot be
deleted.

Note: For libraries in VSAM-managed space, the Librarian DELETE command
removes the library from the control of the Librarian, but the VSE/VSAM
cluster remains unchanged. This cluster can be redefined later as a library,
or it can be deleted completely using VSE/VSAM Access Method Services.

 Deleting Sublibraries
If the sublibrary to be deleted is specified in a LIBDEF statement, that LIBDEF
statement must be dropped (LIBDROP statement) or changed before the sublibrary
is deleted. A sublibrary can only be deleted if it is not used at the same time in a
different partition of the system. If a sublibrary includes locked members, these
members must be UNLOCKED first before the sublibrary can be deleted. You may
delete one or more sublibraries with a single DELETE command:

// JOB DELETE SUBLIB
// EXEC LIBR
DELETE SUBL=YOURLIB.YSUB2 YOURLIB.YSUB3 MYLIB.MSUB4
/\
/&

When this job stream is run sublibraries YOURLIB.YSUB2, YOURLIB.YSUB3 and
MYLIB.MSUB4 are deleted. The space is released and can be used again.

130 IBM VSE/ESA Guide to System Functions

 Using VSE Libraries

 Deleting Members
You may delete one or more members with a single DELETE command. The
sublibrary has to be specified in a preceding ACCESS command. Locked members
must first be UNLOCKED before they can be deleted (refer also to “Locking Rules”
on page 141). You may delete one or more members with a single DELETE
command:

// JOB DELETE MEMBERS
// EXEC LIBR
ACCESS SUBL=YOURLIB.YSUB5
DELETE ACCOUN1B.PHASE ACCOUN2B.OBJ ACCOUN3B.PROC
/\
/&

Phase ACCOUN1B, object module ACCOUN2B, and procedure ACCOUN3B are
deleted.

Releasing Freed Space

If the space freed by member deletion belongs to a library on a shared disk, or is
accessed by another partition, the release of the freed space is delayed until a
non-shared status exists, or the other access is dropped. This ensures, for
example, that a read operation can continue although the same member is being
deleted in parallel.

A shared status exists if the library is either shared across CPUs or between the
partitions of a single VSE system (via LIBDEF statements for example).

The REUSE attribute, specified in the DEFINE SUBLIB command, controls the
releasing of space. REUSE=AUTO (the default) delays release until the sublibrary
is in a non-shared status. REUSE=IMMEDIATE causes immediate release of space
in the sublibrary when a member is deleted.

Note: If any sublibrary in a given library contains sensitive members, all
sublibraries in this library should have the attribute REUSE=AUTO.

The RELEASE command causes the immediate release of all member and
directory space belonging to members deleted while REUSE=AUTO is in effect and
the sublibrary is shared.

For further details refer to “Release Space for a Library or Sublibrary” on page 145.

Input Command when Punching a Member
 For details, refer to “Punch and Re-Catalog a Member” on page 144.

List Library, Sublibrary, or Member Information
For the listing function two commands are available, the LIST and the LISTDIR
(LD) command.

 Chapter 4. Using VSE Libraries 131

 Using VSE Libraries

The LIST Command
By using the LIST command you can display the contents of one or more
members, either on SYSLST or SYSLOG.

Phases and dumps are listed in a combined hexadecimal and character string
format. For all other member types you may specify FORMAT=HEX so that each
member record is followed by a two-line hexadecimal translation. For example:

// JOB LIST
// EXEC LIBR

(1) ACCESS SUBL=IJSYSRS.SYSLIB
(2) LIST LVTOC.PHASE
(3) LIST $IPLVSE.PROC
(4) LIST $IPLVSE.PROC FORMAT=HEX
 /\
 /&

(1) Defines the sublibrary to be accessed.

(2) Phase LVTOC is to be displayed. Refer to Figure 40 on page 133 for the
output format.

(3) Procedure $IPLVSE is to be displayed. Refer to Figure 41 on page 133 for
the output format.

(4) Procedure $IPLVSE is to be displayed with FORMAT=HEX on. Refer to
Figure 42 on page 134 for the output format.

Note that a HEX display is usually used for code that exists, for example, as a
phase. In example (4), a procedure ($IPLVSE) is used for a HEX display. This is
to allow a compare of the HEX display with the display of the same procedure
created with the LIST command under (3).

Since no output device is explicitly specified, the default is taken. This is SYSLST,
if the commands were entered from SYSIPT, or SYSLOG, if the commands were
entered from SYSLOG.

132 IBM VSE/ESA Guide to System Functions

 Using VSE Libraries

MEMBER=LVTOC.PHASE SUBLIBRARY=IJSYSRS.SYSLIB DATE: 1999-ð1-24
 TIME: 15:34
--
ðððððð ð5Fð47Fð Fð625CC9 6ðF3FðF1 4ðC3D6D7 \ ð ðð \IJWLTV1.ð4 ...
ðððð2ð E8D9C9C7 C8E34ðC9 F54ðD3C9 C3C5D5E2 \YRIGHT IBM CORP 19 ...
ðððð4ð C5C44ðD4 C1E3C5D9 C5D9E3E8 4ðD6C64ð \ED MATERIAL,PROGRA ...
ðððð6ð C9C2D4ðð ð59ð41Að AE2318DE D7ð9B3Að \IBM
 .
 .
 .
ððð64ð B2FC588ð B3ðð4C8ð 1FEE43Eð B337192E \
ððð66ð 477ð96ðE 1E785E7ð 588ðB3ð8 197847Dð \
ððð68ð 966C58Eð B2FC4C7ð 422ð1ððð 5ð7ðB28C \
ððð6Að 1E7E5E7ð B2CCD2ð1 2ððð5EEð B28C5EEð \
ððð6Cð B2D8BE6F Eððð5E8ð B31419F8 477ð9686 \
 .
 .
 .

Figure 40. Output Format of a Member (Phase) Display

MEMBER=$IPLVSE.PROC SUBLIBRARY=IJSYSRS.SYSLIB DATE: 1999-ð1-24
 TIME: 15:34
--
ðð9,$$A$SUPX,VSIZE=12ðM,VIO=512K,VPOOL=64K,LOG
ADD ðð9,3277
ADD ððC,254ðR
ADD ððD,254ðP
 .
 .
 .
SYS NPARTS=44
SYS SEC=NO
SYS PASIZE=3ðM
SYS SPSIZE=ðK
SYS BUFLD=YES
DPD VOLID=DOSRES,CYL=2ð9,NCYL=12,TYPE=N,DSF=N
 .
 .
 .
DLA NAME=AREA1,VOLID=DOSRES,CYL=6ð,NCYL=3,DSF=N
SVA SDL=3ðð,GETVIS=768K,PSIZE=(256K,2ðððK)

Figure 41. Output Format of a Member (Procedure) Display

 Chapter 4. Using VSE Libraries 133

 Using VSE Libraries

MEMBER=$IPLVSE.PROC SUBLIBRARY=IJSYSRS.SYSLIB DATE: 1999-ð1-24
 TIME: 15:34
--
ðð9,$$A$SUPX,VSIZE=12ðM,VIO=512K,VPOOL=64K,LOG
FFF655C5EEDE6EECEC7FFFD6ECD7FFFD6EDDDD7FFD6DDC4444444444444444444444444444444444
ðð9BBB1B2477B52995E12ð4B596E5122B57663E642B367ðððððððððððððððððððððððððððððððððð
ADD ðð9,3277
CCC4FFF6FFFF44
144ððð9B3277ðð
ADD ððC,254ðR
CCC4FFC6FFFFD444
144ððð3B254ð9ððð
ADD ððD,254ðP
CCC4FFC6FFFFD444
 .
 .
 .
DLA NAME=AREA1,VOLID=DOSRES,CYL=6ð,NCYL=3,DSF=N
CDC4DCDC7CDCCF6EDDCC7CDEDCE6CED7FF6DCED7F6CEC7D444444444444444444444444444444444
431ð5145E19511B56394E462952B383E6ðB5383E3B426E5ððððððððððððððððððððððððððððððððð
SVA SDL=3ðð,GETVIS=768K,PSIZE=(256K,2ðððK)
EEC4ECD7FFF6CCEECE7FFFD6DECEC74FFFD6FFFFD544444444444444444444444444444444444444
251ð243E3ððB753592E7682B72995ED2562B2ððð2Dðððððððððððððððððððððððððððððððððððððð

Figure 42. Output Format of a Member (Procedure) Display (Format=HEX)

The LISTDIR Command
By using the LISTDIR (LD) command you can display the contents (or part of the
contents) of a library or sublibrary directory. You can also display the system
directory list (SDL).

The output is either displayed on SYSLST or SYSLOG (depending on the input
device), sorted alphamerically. At sublibrary level, the primary sort field is the
member type. You can control the type and amount of the output with the OUTPUT
parameter. For example:

// JOB LIST
// EXEC LIBR
LISTDIR LIB=IJSYSRS OUTPUT=STATUS
/\
/&

This job stream displays the status information of library IJSYSRS on SYSLST.
Refer to Figure 43 on page 135.

134 IBM VSE/ESA Guide to System Functions

 Using VSE Libraries

STATUS DISPLAY LIBRARY=IJSYSRS DATE: 1999-ð1-24
 TIME: 15:34
--
FILE-ID : (NOT DISPLAYED FOR IJSYSRS)
CREATION DATE : 1998-12-19 ðð:ðð
SUBLIBRARIES : 2
LOCATION (BAM) : DEVICE=338ð VOLID=DOSRES CYL = ð.ð8 - 63.14
LIBRARY BLOCK : SIZE= 1ð24 BYTES DATA SPACE= 988 BYTES
TOTAL SPACE : 29512 LIBRARY BLOCKS (1ðð %)
USED SPACE : 23775 LIBRARY BLOCKS (81 %)
DELAYED SPACE : 4 LIBRARY BLOCKS (ð %)
FREE SPACE : 5733 LIBRARY BLOCKS (19 %)

SUBLIBRARY CREATION SPACE NO. OF USED DELAYED % LIBR.

DATE REUSAGE MEMBERS LB'S LB'S SPACE

SYSLIB 1998-12-19 AUTO 2966 236ð5 4 81 %

Figure 43. Output Format of a Library Display (OUTPUT=STATUS)

OUTPUT=STATUS is applicable for libraries and sublibraries. Other output formats
are FULL, NORMAL, and SHORT to be used for libraries, sublibraries, and
members.

The OUTPUT parameter is not applicable for displaying the SDL. The following job
stream displays library, sublibrary, member, and SDL information on SYSLST:

// JOB LIST
// EXEC LIBR

(1) LD L=IJSYSRS O=NORM
(2) LD S=IJSYSRS.SYSLIB O=FULL
(3) LD SDL
(4) LD SDL PHASE=$IJBLBR
(5) LD SDL PHASE=$$\.P\ O=SHORT
(6) LD S=TAP14.SUBLIB2 LOCKID=\
 /\
 /&

(1) Displays the contents of library IJSYSRS in the OUTPUT=NORMAL format.
Refer to Figure 44 on page 136.

(2) The LISTDIR command displays for OUTPUT=FULL also the locking
information of a member. Refer to Figure 45 on page 137.

(3) Displays the system directory list (SDL). Refer to Figure 46 on page 138.

(4) Displays status and directory information for a single phase in
OUTPUT=NORMAL format. Refer to Figure 47 on page 139.

(5) Displays status and directory information for selected phases in
OUTPUT=SHORT format. Refer to Figure 48 on page 140

(6) Displays all locked members in sublibrary TAP14.SUBLIB2. Refer to
Figure 49 on page 140.

 Chapter 4. Using VSE Libraries 135

 Using VSE Libraries

STATUS DISPLAY LIBRARY=IJSYSRS DATE: 1999-ð1-24
 TIME: 15:34
--
FILE-ID : (NOT DISPLAYED FOR IJSYSRS)
CREATION DATE : 1998-12-19 ðð:ðð
SUBLIBRARIES : 2
LOCATION (BAM) : DEVICE=338ð VOLID=DOSRES CYL = ð.ð8 - 63.14
LIBRARY BLOCK : SIZE= 1ð24 BYTES DATA SPACE= 988 BYTES
TOTAL SPACE : 29512 LIBRARY BLOCKS (1ðð %)
USED SPACE : 23775 LIBRARY BLOCKS (81 %)
DELAYED SPACE : 4 LIBRARY BLOCKS (ð %)
FREE SPACE : 5733 LIBRARY BLOCKS (19 %)

--
SUBLIBRARY CREATION SPACE NO. OF USED DELAYED % LIBR.

DATE REUSAGE MEMBERS LB'S LB'S SPACE
--
SYSLIB 1998-12-19 AUTO 2966 236ð5 4 81 %
DIRECTORY DISPLAY SUBLIBRARY=IJSYSRS.SYSLIB DATE: 1999-ð1-24
 TIME: 15:34
--
M E M B E R CREATION LAST BYTES LIBR CONT SVA A- R-
NAME TYPE DATE UPDATE RECORDS BLKS STOR ELIG MODE
 --
 APPLID A 98-11-18 - - 163 R 8 YES - - -
 CEEYCDO A 98-11-18 - - 174 R 8 YES - - -
 CEEYPRO A 98-11-18 - - 174 R 7 YES - - -
 CICS A 98-11-18 - - 234 R 11 YES - - -
 COMMON A 98-11-18 - - 595 R 26 YES - - -
 DEVTYPE A 98-11-18 - - 23 R 1 YES - - -
 DFHDCTC2 A 98-11-18 - - 1ð2 R 7 YES - - -
 .
 .
 .

Figure 44. Output Format of a Library Display (OUTPUT=NORMAL)

The column 'CREATION DATE' indicates when that member was cataloged for the
first time. The column 'LAST UPDATE' indicates when that member was
re-cataloged or updated last.

The following applies to the BYTES/RECORDS column:

If the size of a member exceeds a value of 8 digits, the notation of the size for
such a member is in KB (kilobytes) or in KR (kilorecords). Members of type
DUMP, for example, can be in this range.

The last two columns for A-MODE and R-MODE indicate whether the program
(phase) is eligible for running in a 24-bit or 31-bit environment or both.

136 IBM VSE/ESA Guide to System Functions

 Using VSE Libraries

STATUS DISPLAY SUBLIBRARY=IJSYSRS.SYSLIB DATE: 1999-ð1-24
 TIME: 12:ð7
--
CREATION DATE: 1998-12-19 ðð:ðð
MEMBERS : 298ð
SPACE REUSAGE: AUTOMATIC
USED SPACE: 23929 LIBRARY BLOCKS (81% OF LIBRARY SPACE)
DELAYED SPACE: 4 LIBRARY BLOCKS (ð% OF LIBRARY SPACE)
--

--
DIRECTORY DISPLAY SUBLIBRARY=IJSYSRS.SYSLIB DATE: 1999-ð1-24
 TIME: 12:ð7
--
 M E M B E R
NAME TYPE M E M B E R I N F O R M A T I O N
--
 $IJBxxx PHASE CREATION DATE : 1998-12-21 ðð:ðð
 LAST UPDATE : 1998-12-21 14:ð2

NUMBER OF RECORDS : 1
LOGICAL RECORD SIZE: 214184
LIBRARY BLOCKS USED: 217
FIRST LIBRARY BLOCK: 12.ð1.11 (CYL.TRK.REC)

ON VOLID: VSE51ð
LAST LIBRARY BLOCK : 1.ð9.21 (CYL.TRK.REC)

ON VOLID: VSE51ð

CONTIGUOUSLY STORED: NO
 MSHP CONTROLLED : YES

MSHP BYPASS USED : YES
 SYSIPT DATA : NO
 LOCKED : NO
 LOCKID : -

PHASE SIZE : 211712 (HEX: ð33Bðð)
LOAD ADDRESS (HEX): ð4Að78
ENTRY ADDRESS (HEX): ð4Að78

 SVA ELIGIBLE : YES
 PFIX REQUESTED : NO
 RELOCATABLE : YES
 ADDRESSING MODE : 31
 RESIDENCY MODE : ANY

PROG1 PHASE CREATION DATE : 1998-12-21 ðð:ðð
 LAST UPDATE : 1998-12-21 14.ð2
 .
 .
 .
 SYSIPT DATA : NO
 LOCKED : YES
 LOCKID : LXX1
 .
 .
 .

Figure 45. Output Format of a Sublibrary Display (OUTPUT=FULL)

 Chapter 4. Using VSE Libraries 137

 Using VSE Libraries

STATUS DISPLAY SDL AND SVA DATE: 1999-ð1-24
 TIME: 11:14
--
SDL TOTAL ENTRIES : 452 (1ðð%)
 USED ENTRIES : 39ð (86%)
 FREE ENTRIES : 62 (14%)

SVA(24) TOTAL SPACE : 2ð56K (1ðð%)
USED SPACE : 1844K (9ð%)
- PFIXED AREA: 1ð5K (5%) START AT: ðð2Bð998

 FREE SPACE : 212K (1ð%)

SVA(31) TOTAL SPACE : 3956K (1ðð%)
USED SPACE : 1866K (47%)
- PFIXED AREA: 597K (15%) START AT: ð2647AF8
FREE SPACE : 2ð9ðK (53%)

--
DIRECTORY DISPLAY SDL DATE: 1998-ð1-24
 TIME: 14:ðð
 --
M E M B E R ORIGIN SVA/MOVE LOADED PHASE ADDRESS ENTRY POINT
NAME TYPE SYSLIB MODE INTO SVA SIZE IN SVA IN SVA
 --
 $$BACLOS PHASE YES MOVE 31 562 ð2382CCð ð2382CCð
 $$BATTNA PHASE YES MOVE 31 1256 ð2382EF8 ð2382EF8
 $$BATTNB PHASE YES MOVE 31 718 ð23833Eð ð23833Eð
 $$BATTNK PHASE YES MOVE 31 11ð4 ð23836Bð ð23836Bð
 $$BATTNR PHASE YES MOVE 31 389 ð2383Bðð ð2383Bðð
 ...
$IJBAR PHASE YES 24 24 89116 ðð2B53Eð ðð2B53Eð
 $IJBASGN PHASE YES 24 24 2872 ðððC9ððð ðððC9ððð
 $IJBATTN PHASE YES 24 24 268ð ðððC9B38 ðððC9B38
 $IJBCJC PHASE YES 24 24 2888 ðððCA5Bð ðððCA5Bð
 $IJBCRT PHASE YES ANY 31 135224 ð23ððððð ð23ððððð
 $IJBCSIO PHASE YES ANY 31 173688 ð26Bð328 ð26Bð328
 $IJBCUIR PHASE YES ANY 31 15628 ð26AC618 ð26AC618
 $IJBDCMD PHASE YES 24 24 25ð32 ðððCBðF8 ðððCBðF8
 $IJBDSP PHASE YES ANY 31 6192 ð26AADEð ð26AADEð
 $IJBDSPA PHASE YES ANY 31 432 ð26AAC28 ð26AAC28
 ...
 PRB$AID PHASE YES NO NO 6536 - -
 PRB$FDM PHASE YES NO NO 4624 - -
 PRB$IDH PHASE YES NO NO 4172ð - -

Figure 46. Output Format of an SDL Display

Column SVA/MOVE MODE can contain MOVE, ANY, 24 or NO and has the
following meaning:

� MOVE means that the phase is self-relocatable and is only valid for B- and
C-transient phases. It indicates that the phase is loaded into the SVA (31-bit or
24-bit, if the free space in the 31-bit SVA was not large enough to hold the
phase at load time) in order to be moved from there to the respective transient
area when the phase is to be executed.

� ANY means that the phase can be loaded into the 31-bit SVA as well as into
the 24-bit SVA.

138 IBM VSE/ESA Guide to System Functions

 Using VSE Libraries

� 24 means the phase can only be loaded into the 24-bit area.

� NO means that the phase is not loaded at all.

STATUS DISPLAY SDL AND SVA DATE: 1999-ð1-24
 TIME: 11:14
--
SDL TOTAL ENTRIES : 452 (1ðð%)
 USED ENTRIES : 418 (92%)
 FREE ENTRIES : 34 (8%)

SVA(24) TOTAL SPACE : 1552K (1ðð%)
USED SPACE : 1362K (88%)
- PFIXED AREA: 1ð8K (7%) START AT: ðð231D2ð

 FREE SPACE : 19ðK (12%)

SVA(31) TOTAL SPACE : 3952K (1ðð%)
USED SPACE : 2926K (74%)
- PFIXED AREA: 597K (15%) START AT: ð2546BFð
FREE SPACE : 1ð26K (26%)

--
DIRECTORY DISPLAY SDL DATE: 1998-ð1-24
 TIME: 14:ðð

 M E M B E R ORIGIN SVA/MOVE LOADED PHASE ADDRESS ENTRY POINT
NAME TYPE SYSLIB MODE INTO SVA SIZE IN SVA IN SVA

$IJBLBR PHASE YES 24 24 261544 ðððD323ð ðððD323ð

Figure 47. Output Format of an SDL Display for a single Phase (O=NORMAL)

 Chapter 4. Using VSE Libraries 139

 Using VSE Libraries

STATUS DISPLAY SDL AND SVA DATE: 1999-ð1-24
 TIME: 11:14

SDL TOTAL ENTRIES : 452 (1ðð%)
 USED ENTRIES : 418 (92%)
 FREE ENTRIES : 34 (8%)

SVA(24) TOTAL SPACE : 1552K (1ðð%)
USED SPACE : 1362K (88%)
- PFIXED AREA: 1ð8K (7%) START AT: ðð231D2ð

 FREE SPACE : 19ðK (12%)

SVA(31) TOTAL SPACE : 3952K (1ðð%)
USED SPACE : 2926K (74%)
- PFIXED AREA: 597K (15%) START AT: ð2546BFð

 FREE SPACE : 1ð26K (26%)

DIRECTORY DISPLAY SDL DATE: 1998-ð1-24
 TIME: 14:ðð

M E M B E R M E M B E R M E M B E R

 NAME TYPE NAME TYPE NAME TYPE
------------------ ------------------ ------------------
 $$BACLOS PHASE $$BOCPð3 PHASE $$BOPLBL PHASE
 $$BATTNA PHASE $$BOESTV PHASE $$BOPNR2 PHASE
 $$BATTNB PHASE $$BOKUL1 PHASE $$BOPNR3 PHASE
 $$BATTNK PHASE $$BOMLTA PHASE $$BOSDC1 PHASE
 $$BATTNR PHASE $$BOMSVA PHASE $$BOSMMW PHASE
 $$BCLOSE PHASE $$BOMSV2 PHASE $$BOSMXT PHASE
 $$BCLOS2 PHASE $$BOPEN PHASE $$BOTLTA PHASE
 $$BCLOS5 PHASE $$BOPENR PHASE $$BOTUSR PHASE
 $$BCLRPS PHASE $$BOPEN1 PHASE $$BOURð1 PHASE
 $$BCVSAM PHASE $$BOPEN2 PHASE $$BOVSAM PHASE
 $$BCVSð2 PHASE $$BOPEN3 PHASE $$BOVSð1 PHASE
 $$BOCPð1 PHASE

Figure 48. Output Format of an SDL Display (O=SHORT)

 DIRECTORY DISPLAY SUBLIBRARY=TAP14.SUBLIB2 DATE: 1999-ð1-24
 TIME: 12:41
 --
M E M B E R CREATION LAST BYTES LIBR
NAME TYPE DATE UPDATE RECORDS BLKS LOCKID
 --
 SDAIDAP2 PHASE 1998-12-21 1998-12-21 55ð4 B 6 WOBO
 .
 .

Figure 49. Output Format of Locked Members

An example of identifying locked members with the SEARCH command is provided
in Figure 54 on page 156.

140 IBM VSE/ESA Guide to System Functions

 Using VSE Libraries

Lock a Member
In an interactive programming environment, it is often necessary to lock a member
for a long period of time. For example, if a user at a workstation wants to edit a
member, this member has to be locked for any write or update access until the
user sends the member back to the host library.

The LOCK command allows you to lock single members with the lockid specified
in the command unless one of the following applies:

� The member is already locked.

� The user has no UPDATE access right for the member.

� The member is MSHP controlled and MSHP bypass is not active.

� The job control option IGNLOCK is active.

Usually, the same user who locks a member will also unlock it. There are two
exceptions, however. MSHP will update a member even if it is locked and the
updated member remains unlocked. In a system with security active, any user with
the UPDATE access right to a locked member can unlock it.

The locking facility is also available with the application program interface of the
Librarian.

 Locking Rules
A locked member remains locked until:

� An UNLOCK command for this member, its library, or sublibrary is given.

� A DEFINE sublibrary command with RESETLOCK=YES is given for the
sublibrary containing the specified member.

� A MOVE, COPY, or RESTORE command with TLOCK=RESET updated the
specified member.

� A MOVE, COPY or RESTORE command with TLOCK=COPY changed the
lockid of the specified member.

� The member is replaced or deleted while the job control option IGNLOCK is
active.

� The member is unlocked by one of the following:

1. Jobs created by dialogs such as the following (and by other IBM service
dialogs):

– Fast Service Upgrade (FSU)

 – PTF Handling

– Install Programs - V2 Format

2. System utilities such as the following:

– Maintain System History Program (MSHP)

– DTRSETP utility program

– DTRISTRT utility program

� The member is updated by MSHP (the member is MSHP controlled and MSHP
bypass is not active).

 Chapter 4. Using VSE Libraries 141

 Using VSE Libraries

The UNLOCK command unlocks a member unless:

� The user has no UPDATE access right for the specified library, sublibrary, or
member.

� The member is locked with a lockid which does not correspond to the one
specified in the UNLOCK command.

� The job control option IGNLOCK is active.

For a detailed description of the TLOCK and RESETLOCK operands and the job
control option IGNLOCK, refer to the manual VSE/ESA System Control Statements
under “COPY”, “DEFINE”, and “OPTION”.

For a non-generic member specification, the command returns an appropriate
message and return code, if the unlock failed and leaves the member unchanged.

Job Control IGNLOCK Option
A library member that has unintendedly been locked may cause programs or job
streams to damage the system if they cannot be executed completely. To allow
modification of such jobs and ensure their normal execution despite of members
that are possibly locked, the job control options IGNLOCK and NOIGNLOCK are
available.

IGNLOCK and NOIGNLOCK have the following characteristics:

� // OPTION IGNLOCK causes locks to be ignored , therefore, use this option
with care. A library member is then treated as if it had not been locked. The
option stays in effect until end-of-job or until an // OPTION NOIGNLOCK is
given. No STDOPT equivalent exists for this option.

� // OPTION NOIGNLOCK, which is always the default, causes // OPTION
IGNLOCK to be reset.

Librarian Handling of IGNLOCK
If the // OPTION IGNLOCK is set, any Librarian function in this job will delete,
rename or update members even if they are locked, or will delete
libraries/sublibraries or rename sublibraries even if they contain locked members.
The renamed or updated member will be unlocked. A corresponding message will
be issued in all cases.

Any LOCK or UNLOCK command and any LIBRM LOCK/UNLOCK macro will be
ignored and a corresponding message will be issued.

In detail, the Librarian commands react as follows if // OPTION IGNLOCK is
specified:

 � CATALOG command

REPLACE=YES causes the specified member to be replaced even if it is
locked; the replaced member will be unlocked.

 � COPY command

The TLOCK option, if specified, is ignored. If REPLACE=YES is in effect, a
target member will be replaced and unlocked even if it is locked. An existing
sublibrary will be replaced also if it contains locked members. The sublibrary
will not contain any locked members after processing.

142 IBM VSE/ESA Guide to System Functions

 Using VSE Libraries

 � DEFINE command

REPLACE=YES causes an existing sublibrary to be deleted even if it contains
locked members.

 � DELETE command

The specified library or sublibrary will be deleted even if it contains locked
members; members will also be deleted if they are locked.

 � LOCK/UNLOCK command

The command is ignored; no member will be locked/unlocked. Return code is 0.

 � MOVE command

The TLOCK option, if specified, is ignored. If REPLACE=YES is in effect, a
target member will be replaced and unlocked even if it is locked. An existing
sublibrary will be replaced even if it contains locked members. The sublibrary
will contain no locked members after processing. The source sublibrary will be
deleted even if it contains locked members; members will also be deleted if
they are locked.

 � RENAME command

A member will be renamed even if it is locked; the renamed member will be
unlocked. A sublibrary will be renamed also if it contains locked members. The
members remain locked in the renamed library. (The old status of the sublibrary
can be recreated by renaming the sublibrary back to its old name).

 � RESTORE command

The TLOCK option, if specified, is ignored. If REPLACE=YES is in effect, a
target member will be replaced and unlocked even if it is locked. An existing
sublibrary will be replaced also if it contains locked members. The sublibrary
will not contain any locked members after processing.

 � UPDATE command

The specified member will be updated even if it is locked. The member will be
unlocked after updating.

� Macro LIBRM OPEN

For TYPEFLE=INOUT or TYPEFLE=(OUTPUT,REPLACE), the specified
member will be opened even if it is locked.

� Macro LIBRM DELETE

The specified member will be deleted even if it is locked.

� Macro LIBRM RENAME

The specified member will be renamed even if it is locked.

� Macro LIBRM CLOSE

For COMMIT=YES, the specified member will be closed and unlocked even if it
is locked.

� Macro LIBRM LOCK/UNLOCK

The macro is ignored; no member will be locked/unlocked. The return code is
0, feedback code 8.

 Chapter 4. Using VSE Libraries 143

 Using VSE Libraries

 LOCK Example
// JOB LOCK
// EXEC LIBR

 ACCESS SUBL=OURLIB.YSUB4
(1) LOCK YPROG.A LOCKID=LWW3
 /\
 /&

(1) Locks member YPROGA.A using LWW3 as lock ID.

 UNLOCK Examples
// JOB UNLOCK
// EXEC LIBR

 ACCESS SUBL=OURLIB.YSUB4
(1) UNLOCK YPROG.A LOCKID=LWW3
(2) UNLOCK SUBL=OURLIB.YSUB5 LOCKID=\
(3) UNLOCK SUBL=OURLIB.YSUB6 LOCKID=A\
 /\
 /&

(1) Unlocks member YPROGA.A in YSUB4 if the lock ID is LWW3.
(2) Unlocks all members in YSUB5.
(3) Unlocks all members in YSUB6 whose lock ID starts with A.

Move a Library, Sublibrary, or Member
Refer to “Copy or Move a Library, Sublibrary or Member” on page 126.

Punch and Re-Catalog a Member
The PUNCH command allows you to punch one or more members from the
sublibrary specified in a preceding ACCESS command. The output device is
SYSPCH. For example:

// JOB PUNCHCAT
ASSGN SYSPCH,TAPE
// EXEC LIBR
ACCESS SUBL=YOURLIB.YSUB1
PUNCH OAZPRG1.OBJ
/\
/&

With this job, a punched version of the member OAZPRG1.OBJ in sublibrary
YOURLIB.YSUB1 is created on the tape unit assigned to SYSPCH.

The punched version includes the end-of-file indication of the original member and
is preceded by a CATALOG statement for a subsequent catalog run. The
CATALOG statement includes the EOD and DATA parameter if applicable.

A CATALOG statement is punched for object modules, source books, procedures,
and user-defined member types. A PHASE statement is punched for phases to
allow easy cataloging with a Linkage Editor run.

You only have to provide the sublibrary name (via the ACCESS command) in order
to re-catalog the punched object module in a different sublibrary as shown by the
following skeleton job:

144 IBM VSE/ESA Guide to System Functions

 Using VSE Libraries

// JOB CAT
// ASSGN SYSIPT,... (to SYSPCH of punch job)
// EXEC LIBR,PARM='ACCESS SUBLIB=...'
(Librarian reads input from SYSIPT)
/\
/&

Refer also to “Catalog a Member” on page 119.

In the following sequence, the same job steps as shown above, punching and
cataloging a member, are performed. But instead of SYSRDR, SYSLOG is used as
the input device for the control statements. No JOB statement and no // in front of
the job control statements are necessary when running the Librarian from SYSLOG.

(1) ASSGN SYSPCH,28ð
(2) EXEC LIBR
(3) ACCESS SUBL=YOURLIB.YSUB1
(4) PUNCH OAZPRG1.OBJ
(5) END
(6) MTC REW,28ð
(7) ASSGN SYSIPT,28ð
(8) EXEC LIBR
(9) ACCESS SUBL=OURLIB.OSUB2
(1ð) INPUT SYSIPT

(1) Tape unit 280 is assigned to SYSPCH.

(2) The Librarian program is called.

(3) The sublibrary to be accessed (YOURLIB.YSUB1) is defined.

(4) The member OAZPRG1.OBJ stored in YOURLIB.YSUB1 is punched and the
output is written to SYSPCH.

(5) The Librarian run is ended.

(6) The SYSPCH tape is rewound to the start of the punched output.

(7) Tape unit 280 is re-assigned as input device for the catalog step.

(8) The Librarian program is called again.

(9) OURLIB.OSUB2 is accessed as target sublibrary for the following CATALOG
statement.

(10) With the INPUT Librarian command you change the input device from
SYSLOG to SYSIPT. From now on the Librarian reads all input from tape unit
280. Since the CATALOG command and the EOD indication are part of the
punched output, all information for cataloging is available.

Release Space for a Library or Sublibrary
When you delete a member, the space occupied is usually released and can be
used again. However, this is not true for libraries and sublibraries that are either
shared between the partitions of one VSE System (via LIBDEF statements, for
example) or that are shared across CPUs.

Note: A library with several extents distributed over several DASDs is considered
to be shared across CPUs if the first extent of the library resides on a
shared DASD.

 Chapter 4. Using VSE Libraries 145

 Using VSE Libraries

For such libraries or sublibraries the space is only released when it is known that
they are in a non-shared status. This ensures that a read operation can continue
although the member is being deleted at the same time.

With the RELEASE command you can force the release of space for shared
libraries and sublibraries. For example:

// JOB RELEASE SPACE
EXEC LIBR
RELEASE SPACE SUBLIB=SHARLIB.SHSUB1
/\
/&

This job frees all space for sublibrary SHARLIB.SHSUB1 that is recorded internally
for release, although the sublibrary may still be in a shared status.

Specifying LIB=SHARLIB in the RELEASE command frees the space of all
sublibraries of SHARLIB recorded for release.

It is also possible to define a shared sublibrary so that the space freed by deletion
of members becomes available for reuse at once. This is done by specifying
REUSE=IMMEDIATE in the DEFINE command for the sublibrary.

Note: This command must be used carefully. It may occur that a library member
stored in a shared sublibrary is being retrieved and deleted at the same
time. Since the release of space is normally delayed until a non-shared
status exists, the member can still be read and no problem arises. However,
if in such a situation the release of space is forced, jobs reading the deleted
members terminate abnormally.

Rename a Sublibrary or a Member
With the RENAME command you can change the name of one or more
sublibraries, or the name and type of one or more members. If the new name
already exists, the sublibrary or member is not renamed.

Note: For details about the locking function in connection with the RENAME
command, refer also to “Librarian Handling of IGNLOCK” on page 142.

 Renaming Sublibraries
A sublibrary can only be renamed if it is not being accessed at same time by
another VSE partition. Also, a LIBDEF statement including a sublibrary name that is
to be changed must be dropped (LIBDROP statement), or changed accordingly,
before the rename job is run.

Note that sublibraries with locked members cannot be renamed. Refer also to
“Locking Rules” on page 141.

The following job stream changes the names of two sublibraries:

// JOB RENAME SUBLIBS
// EXEC LIBR
RENAME SUBLIB YOURLIB.YSUB1:YOURLIB.YSUB11 -
 YOURLIB.YSUB2:=.YSUB12
/\
/&

146 IBM VSE/ESA Guide to System Functions

 Using VSE Libraries

YOURLIB.YSUB1 becomes YOURLIB.YSUB11 and YOURLIB.YSUB2 becomes
YOURLIB.YSUB12. The library name must always be the same for the first and the
second operand. The library name may be replaced by the character '=' in the
second operand.

 Renaming Members
Note that locked members cannot be renamed. Refer also to “Locking Rules” on
page 141.

The sublibrary in which a member resides must be defined with an ACCESS
command. The following job stream changes the names of two members:

// JOB RENAME1
// EXEC LIBR
ACCESS SUBL=YOURLIB.YSUB3
RENAME CHECKRB.PHASE:VERFYRB.=, -
 CHECKEX1.PROC:VERFYEX1.=
/\
/&

CHECKRB.PHASE becomes VERFYRB.PHASE and CHECKEX1.PROC becomes
VERFYEX1.PROC. Since the member type does not change you can use the
character '=' in the second operand. This is also true for the member name if it
remains the same and only the member type is changed.

You can specify the member name and type in generic format as well. But both the
first and the second operand must then be specified in the generic format. For
example:

// JOB RENAME2
// EXEC LIBR
ACCESS SUBL=YOURLIB.YSUB3
RENAME A\.PROC:AB\.= FF\.X\:GGA\.Y\
/\
/&

With this job all procedures whose names begin with 'A' are identified and 'A' is
replaced by 'AB'.

In addition, all members whose names begin with 'FF' and whose types start with
'X' are identified and 'FF' is replaced by 'GGA' and 'X' is replaced by 'Y' in the
member type.

If this renaming would result in a name that is longer than eight characters, the
rename function is not carried out, and the Librarian sets a return code of 8.

Renaming for Assigning User-Defined Member Types
It may be useful, for example, to maintain several versions of a cataloged
procedure. This can be done by assigning the same name but different member
types. One version is assigned the member type PROC, to the other versions
user-defined member types (PROC1,PROC2,PROC3..., for example). The version
of type PROC can be considered as activated and when the procedure is called
this version is chosen. You can easily deactivate this procedure by changing its
type, for example to PROC4, and activate another version of these cataloged
procedures by assigning the member type PROC to it, using the RENAME
command. The job stream which calls this procedure need not be changed.

 Chapter 4. Using VSE Libraries 147

 Using VSE Libraries

Restore a SYSRES File, Library, Sublibrary, or a Member
By using the restore function (command RESTORE) of the Librarian you can
restore backup tapes created by the backup function (command BACKUP) of the
Librarian. Single members of backed-up sublibraries, or sublibraries of backed-up
libraries can be restored selectively. During restore, an internal reorganization is
performed (scattered free space is removed), which usually results in faster read
access after restore.

Notes:

1. Refer also to “Backup a SYSRES File, Library, Sublibrary, or Member” on
page 112 since both commands (BACKUP and RESTORE) have close
dependencies.

2. For details about the locking function in connection with the RESTORE
command, refer also to “Locking Rules” on page 141 and “Librarian Handling
of IGNLOCK” on page 142.

3. With VSE/SP Version 2 (a predecessor system of VSE/ESA) a new library
structure was introduced. Backup tapes created with the backup utility program
of earlier releases (prior to VSE/SP Version 2) can also be restored. This
allows the migration of libraries from such old releases, if required. The
description of the required restore OLDLIB operand in the manual VSE/ESA
System Control Statements provides additional details under “RESTORE”.

The following can be changed between creating a backup tape and restoring it:

� The number of extents for a library.

� The disk device type.

� The type of library (system into private, for example).

A library that resided in non-VSAM-managed space may be restored into
VSAM-managed space and vice versa.

The RESTORE command accepts unlabeled tapes and tapes with standard
labels .

The following may be part of a backup tape and restored:

 � SYSRES files

This may be either IJSYSRS, the IPLed SYSRES file, or SYSRES files created
additionally. The names IJSYSR1 through IJSYSR9 are available for that
purpose. A SYSRES file consists of the system sublibrary SYSLIB and may in
addition contain one or more private sublibraries as well as free space. A
SYSRES file can be restored stand-alone or online.

� Libraries and sublibraries

These can only be restored online.

With VSE/SP Version 2 (a predecessor system of VSE/ESA) a new library
structure was introduced. Libraries of an earlier design (prior to VSE/SP
Version 2) can only be restored if they have been backed up as private libraries
with the restore OLDLIB operand.

148 IBM VSE/ESA Guide to System Functions

 Using VSE Libraries

 � Library members

Selected library members can be restored online. This can be considered as a
copy function - the restored members are added to the sublibrary specified, and
replace members of the same name and type, if REPLACE=YES is specified.

Restoring a SYSRES file, library, or sublibrary includes its creation. This means
that an existing version is deleted and replaced by the version being restored, if
REPLACE=YES is specified in the RESTORE command; or that the restore fails, if
REPLACE=NO is specified or the REPLACE operand is omitted.

The following restrictions apply:

� An existing library is not restored if it is being accessed by another partition at
the same time.

� An existing library is not restored if one of its sublibraries is specified in a
LIBDEF statement. This statement has to be dropped (LIBDROP statement) or
changed accordingly.

� A library or sublibrary is not restored if existing library members are locked. The
same is true of a single library member that is locked. In such cases, use the
RESTORE operands TLOCK=RESET or TLOCK=COPY.

� Since the active system sublibrary IJSYSRS.SYSLIB cannot be replaced by a
restore run, a sublibrary of the name SYSLIB that is to be restored into the
system library IJSYSRS must be assigned a different name.

� A SYSRES file with the name IJSYSRS must be assigned a different name if it
is to be restored online. IJSYSRS is reserved for the SYSRES file used for IPL.

� A SYSRES file can be restored as a private library by assigning a name
different from IJSYSR1 through IJSYSR9, but not vice versa.

� When restoring with the operand OLDLIB into an existing sublibrary, the
members of the “old” library are added to the “new” sublibrary. The REPLACE
attribute takes effect at member level.

The tape created with the backup function contains one or more backup files.
Stand-alone programs or the system history file, which may be on the backup tape,
are recognized automatically and skipped. A system history file must be restored
with an MSHP INSTALL or RESTORE job, which can be used to restore libraries at
the same time.

Retrieving Information from the Backup Tape
Before performing an actual restore run you may need to know the precise contents
of the backup tape, and you will certainly need to know the space requirements for
restoring the libraries and sublibraries. To gather this information you can use the
SCAN operand of the RESTORE command. With the SCAN operand specified no
restore is performed, but the complete content of an unlabeled backup tape is
scanned and the required information is printed on SYSLST. For a labeled backup
tape, only the content of the backup file identified by the label is scanned.

The replacing of members requires temporary disk space over and above the
space needed for the members themselves. SCAN provides the following functions:

 Chapter 4. Using VSE Libraries 149

 Using VSE Libraries

� The names of all libraries, sublibraries, (and their space requirements), and the
names of all members are retrieved and listed. For libraries the space
requirements for all supported disk devices are given; for sublibraries in
libraries on the backup tape, the number of library blocks they need is given.

� For sublibraries backed-up separately, the disk space requirements for all
supported disk devices are given.

� When specific libraries, sublibraries, or members are to be restored, the
Librarian searches for them and prints their names with an indication whether
they are on the backup tape or not. For libraries and sublibraries the space
requirements are also given.

� By using a generic member specification all members of the backup tape
matching that generic specification are listed.

The following job causes the next backup file on the unlabeled backup tape
mounted on physical unit 281 to be scanned. The names of all libraries and
sublibraries as well as the space requirements for restore (on all DASD types
supported) are printed on SYSLST. If the backup file contains only members, the
names of all members are printed on SYSLST.

// JOB SCAN
// EXEC LIBR
RESTORE \,SCAN=YES,TAPE=281
/\
/&

The command:

RESTORE \ ID=\ SCAN=YES T=281

causes all following backup files on the unlabeled backup tape to be scanned. Note
that blanks and commas are allowed between the operands of Librarian
commands. For a labeled tape the command would look as follows:

RESTORE \ SCAN=YES T=281 TAPELABEL=filename

Restoring Online SYSRES Files, Libraries, and Sublibraries
With the following job stream two libraries (one is a SYSRES file) and one
sublibrary are restored. They are all part of a single, unlabeled backup tape
mounted on the physical unit 281, and the specified ID= operands identify the
correct backup file:

// JOB RESTORE
// DLBL YOURLIB,...
// EXTENT ,volser,...
// DLBL MYLIB,...
// EXTENT ,volser,...
// DLBL IJSYSR1,...
// EXTENT ,volser,...
// EXEC LIBR
RESTORE LIB=IJSYSR1 TAPE=281 ID=BA1
RESTORE LIB=YOURLIB TAPE=281 ID=BA3
RESTORE SUBLIB=MYLIB.MSUB1 TAPE=281 ID=BA4
/\
/&

150 IBM VSE/ESA Guide to System Functions

 Using VSE Libraries

Note: A backed-up SYSRES file must be restored to a disk volume separate
from the currently IPLed system. The SYSRES file IJSYSR1, library
YOURLIB, and sublibrary MYLIB.MSUB1 are restored from tape to the
DASD locations defined by the DLBL and EXTENT statements. The
RESTORE commands must reflect the sequence of the backup files
(BA1,BA3, and BA4) on the backup tape.

By specifying:

RESTORE \ ID=\ TAPE=281

all libraries and/or sublibraries of the unlabeled backup tape are restored. In the
example above, the old names are also the new names for the SYSRES file, library
and sublibrary restored. You may run such a restore job stream in case of a
destroyed library or for internal reorganization to improve performance. If you want
to use the restore function for a copy operation, you have to specify two names: the
old name under which a library, for example, is stored on the backup tape and the
new name under which it is to be restored. The restore commands might then look
as follows:

RESTORE LIB=IJSYSR1:IJSYSR3,TAPE=281,ID=BA1
RESTORE LIB=YOURLIB:OURLIB,TAPE=281,ID=BA3
RESTORE SUBLIB=MYLIB.MSUB1:COMLIB.CSUB5,TAPE=281,ID=BA4

SYSRES file IJSYSR1 becomes SYSRES file IJSYSR3, library YOURLIB becomes
library OURLIB, and sublibrary MYLIB.MSUB1 becomes sublibrary
COMLIB.CSUB5.

For details about tape positioning refer to “Tape Positioning” on page 117.

Restoring Online Library Members
Library members can be selectively restored from the backup tape into a target
sublibrary. The system sublibrary SYSLIB may also be specified as a target
sublibrary. Refer to the following example:

// JOB RESMEM
// EXEC LIBR

(1) ACCESS SUBLIB=COMLIB.CSUB3
(1) RESTORE YOURLIB.YSUB1.CRMUPD6.PHASE, -
 YOURLIB.YSUB1.CRMUPD7.PHASE, -
(2) YOURLIB.YSUB1.JOBACC4.PHASE:IJSYSRS.SYSLIB,TAPE=281
 /\
 /&

(1) Phases CRMUPD6 and CRMUPD7 of YOURLIB.YSUB1 are restored into the
target sublibrary CSUB3, defined with an ACCESS command.

(2) The target sublibrary can also be defined with the RESTORE command as
shown. Phase JOBACC4 of YOURLIB.YSUB1 is restored into the system
sublibrary IJSYSRS.SYSLIB.

Existing members of the same name and type are deleted and replaced by the
member restored, if REPLACE=YES is specified. Example with Labeled Tape :

 Chapter 4. Using VSE Libraries 151

 Using VSE Libraries

The following example is for an online restore with a labeled tape:

// JOB RESTORE
// TLBL TL1, ...
// MTC REW,181
// EXEC LIBR

REST SUBL=MYLIB.MSUB1 TAPE=181 TAPELABEL=TL1
/\
/&

Duplicate Names in RESTORE Command
In one RESTORE command you may specify a list of library, sublibrary or member
names to be restored. If, for some reason, one name occurs more than once in the
list, one of two things may happen:

� If the name exists only once on the backup tape, it is restored when the name
is first read in the RESTORE command. When the name is read again in the
same RESTORE statement, the Librarian issues the message:

LIBRARY (or SUBLIBRARY or MEMBER) NOT FOUND

� If the name occurs more than once (for example in another backup file of an
unlabeled tape containing the same library), the second occurrence on tape
overwrites the first, if REPLACE=YES is specified. If REPLACE=NO is in effect,
the Librarian issues a message and sets a return code of 8.

Restoring a SYSRES File Stand-Alone
The stand-alone restore function allows a single SYSRES file to be restored. This
file may be stored on a distribution tape, for example, or on any tape created using
the backup function with RESTORE=STANDALONE specified. If the backup tape
contains more than one SYSRES file, one has to be selected. If private libraries,
sublibraries, or members are also part of the backup tape, they must be restored
online.

A backup tape for a stand-alone restore need not include a SYSRES file; the
SYSRES file can be on another tape.

The stand-alone restore program prompts you for a TLBL statement. If you have an
unlabeled backup tape, simply respond by pressing ENTER. For a labeled tape
enter the tape label in the format

// TLBL UIN,'x ... x'

where the file name must be UIN.

Figure 50 on page 153 shows a console communication example of a restore run
(not initial installation) with an unlabeled tape. In the example, input entered from
the console is indicated by arrows. The following preliminary steps are required:

1. Mount the tape with the stand-alone programs.

2. IPL the tape.

 3. Press ENTER.

152 IBM VSE/ESA Guide to System Functions

 Using VSE Libraries

BG ðððð SAð1I \\\\\\\\\\\ STAND ALONE PROGRAMS LOADED \\\\\\\\\\\
BG ðððð SAð2D IF YOU WANT A LISTING, SPECIFY CUU OF PRINTER, ELSE BYPASS

==>(ENTER)
 BG-ðððð
==>ð

BG ðððð SAð8D DATE IS ð3/12/1999. ACCEPT DATE (ENTER) OR SPECIFY DATE MM/DD/YYYY
 BG-ðððð
==>ð

BG ðððð SAð9I SELECT ONE OF THE FOLLOWING PROGRAMS, OR TYPE END
BG ðððð SA1ðD FASTCOPY, RESTORE, ICKDSF, DITTO, REIPL

 BG-ðððð
==>ð restore

BG ðððð SA11D SPECIFY ADDRESS OF INPUT DEVICE CUU
 BG-ðððð
==>ð 493

BG ðððð SAð3D DEVICE TYPE IS 348ð. SPECIFY ALTERNATE TYPE, OR ACCEPT (ENTER)
 BG-ðððð
==>ð

BG ðððð SA15D IF TAPE LABEL CHECKING IS DESIRED SPECIFY // TLBL, ELSE BYPASS (ENTER)
 BG-ðððð
==>ð

BG ðððð SA16D SPECIFY ADDRESS OF SYSRES DISK CUU
 BG-ðððð
==>ð 863

BG ðððð SAð3D DEVICE TYPE IS 338ð. SPECIFY ALTERNATE TYPE, OR ACCEPT (ENTER)
 BG-ðððð
==>ð

BG ðððð L3ð2A ENTER YES TO RESTORE SYSRES FILE IJSYSRS OR NO TO SKIP TO NEXT SYSRES
 BG-ðððð
==>ð yes

BG ðððð L315I ORIGINAL FILE ID= VSE.SYSRES.LIBRARY
BG ðððð L316A ENTER YES TO KEEP OR NO TO RESPECIFY THE SYSRES FILE ID

 BG-ðððð
==>ð yes

BG ðððð L3ð9I ORIGINAL ALLOCATION= 954 TRACKS = 63 CYLINDERS 9 TRACKS
BG ðððð L31ðA ENTER YES TO KEEP OR NO TO RESPECIFY THE ALLOCATION

 BG-ðððð
==>ð no

BG ðððð L312I MINIMUM ALLOCATION= 667 TRACKS = 44 CYLINDERS 7 TRACKS
BG ðððð L3ð4I ENTER THE DESIRED ALLOCATION AS NUMBER OF TRACKS OR CYLINDERS/TRACKS
BG ðððð L313A ALLOC=

 BG-ðððð
==>ð 959

BG ðððð L329A ENTER YES TO RESTORE ALL SUBLIBRARIES OR NO FOR SELECTIVE RESTORE
 BG-ðððð
==>ð yes

BG ðððð L338I SUMMARY OF RESTORE PARAMETERS:
BG ðððð L318I FILE NAME = IJSYSRS
BG ðððð L319I FILE ID = VSE.SYSRES.LIBRARY
BG ðððð L321I ALLOCATION= 959 TRACKS
BG ðððð L344I START= CYLINDER ð TRACK 1 - END= CYLINDER 63 TRACK 14
BG ðððð L327I RESTORE ALL SUBLIBRARIES
BG ðððð L322A ENTER YES IF THE SPECIFICATION IS CORRECT OR NO TO RESPECIFY

 BG-ðððð
==>ð yes

BG ðððð L3ððI FORMATTING OF LIBRARY IJSYSRS IN PROGRESS
BG ðððð L3ð6I RESTORE OF LIBRARY IJSYSRS IN PROGRESS
BG ðððð L325I RESTORE OF SUBLIBRARY IJSYSRS.SYSLIB IN PROGRESS
BG ðððð L326I RESTORE COMPLETE FOR LIBRARY IJSYSRS
BG ðððð SAð9I SELECT ONE OF THE FOLLOWING PROGRAMS, OR TYPE END
BG ðððð SA1ðD FASTCOPY, RESTORE, ICKDSF, DITTO, REIPL

 BG-ðððð
==>ð end

BG ðððð SA17W \\\\\ END OF STAND ALONE PROCESSING \\\\\

Figure 50. Example of a Stand-Alone Restore (Unlabeled Input Tape)

 Chapter 4. Using VSE Libraries 153

 Using VSE Libraries

Restoring with the Librarian Time-Stamp Control
The Librarian program stores (and displays or prints) time stamps for events as
follows:

� Creation of a library or sublibrary – the date and time when a library or
sublibrary is created or replaced.

� Creation of a library member – the date and time when a library member is
newly stored into a sublibrary.

Note: In a directory listing (the output of the LISTDIR command), the words
CREATION DATE are used instead of PUT INTO SUBLIBRARY as done
formerly.

� Last-update – the date and time when an existing library member is replaced or
modified.

Note: In a directory listing (the output of the LISTDIR command), the words
LAST UPDATE are used instead of LAST REPLACED as done formerly.

It may be desirable to preserve the original time stamp beyond and in spite of
intervening backups and restores. The restore DATE option allows you to specify
whether or not the existing time stamp is to be preserved. You can use this option
for any backup that was taken on VSE/SP Version 2 or a later version (VSE/SP
was the predecessor system of VSE/ESA). However, the "last update" time stamp
is not retained if the backup tape was created under VSE/SP 3.1.2 or earlier. The
"creation date" time stamp is retained.

The option can be specified as DATE=OLD or DATE=NEW in the RESTORE
command. DATE=OLD indicates that the date and time stored on the backup tape
is to be used.

DATE=OLD cannot be specified for:

 – A stand-alone restore run.
 – A restore run with OLDLIB specified on the RESTORE statement.

The DATE option is ignored for a restore run if SCAN=YES is specified on the
RESTORE statement.

For a detailed description of the DATE option refer to the manual VSE/ESA System
Control Statements under “RESTORE”.

Search for Members
The SEARCH command searches for specified members in libraries or sublibraries.
For every member found, the name and the name of the sublibrary is printed.
Additionally, a list of all libraries in which a member was found is provided at the
end. If a lock ID is specified, only the members locked by the specified lock ID are
displayed.

// JOB SEARCH
// EXEC LIBR

(1) SEARCH A.A\ LIB=TESTLIB,JSLIB O=NORMAL
(2) SEARCH \.A LBR=CONNECT O=FULL
(3) SEARCH TRERP.PHASE LIBDEF=PHASE P=F3 O=FULL
(4) SEARCH \.\ LIB=TESTLIB LOCK=\ O=FULL
 /\
 /&

154 IBM VSE/ESA Guide to System Functions

 Using VSE Libraries

(1) The Librarian searches libraries TESTLIB and JSLIB for members whose
member name is A and their member type starts with A. Refer to Figure 51
on page 155.

(2) The Librarian searches in the library chains created with the CONNECT
command for all members whose member type is A. Refer to Figure 52.

(3) The Librarian searches for phase TRERP in the libraries of the active LIBDEF
chain for phases for partition F3. Refer to Figure 53 on page 156.

(4) The Librarian searches for all locked members in library TESTLIB. Refer to
Figure 54 on page 156.

The OUTPUT option (short form: O) has two parameters. O=FULL provides a
SUMMARY OF AFFECTED LIBRARIES at the end of a display. O=NORMAL does
not.

 M E M B E R CREATION LAST
NAME TYPE LIBRARY SUBLIB CHAIN DATE UPDATE
--
A A12
 TESTLIB S1 1998-12-14 1999-ð1-18
 TESTLIB S2 1998-12-14 - -
 JSLIB PROD 1998-12-14 - -

Figure 51. Output Format of Searched Members in Libraries (OUTPUT=NORMAL)

 M E M B E R CREATION LAST
NAME TYPE LIBRARY SUBLIB CHAIN DATE UPDATE

MWW12 A
 TESTLIB S1 CONN-FROM 1998-12-14 1999-ð1-12
DUMMY3 A
 TESTLIB S1 CONN-FROM 1998-12-16 1999-ð1-12
TESTSL1 A
 TESTLIB S1 CONN-FROM 1998-12-16 - -

VSAM SYSLIB CONN-TO 1998-12-16 - -

SUMMARY OF AFFECTED LIBRARIES DATE 1999-ð1-24
 TIME 12:41

 CREATION # OF
 LIBRARY DATE SUBLIBS DEVICE VOLID

TESTLIB 1998-12-14 7 338ð JSCB3ð
VSAM 1998-12-14 4 338ð JSCB3ð

Figure 52. Output Format of Searched Members in CONNECT Libraries (OUTPUT=FULL)

 Chapter 4. Using VSE Libraries 155

 Using VSE Libraries

 M E M B E R CREATION LAST
NAME TYPE LIBRARY SUBLIB CHAIN DATE UPDATE
--
TRERP PHASE
 VSE1B3 AA26 PHASE :SRCH 1998-ð8-ð2 - -
--
SUMMARY OF AFFECTED LIBRARIES DATE 1999-ð1-24
 TIME 12:41
--
 CREATION # OF
 LIBRARY DATE SUBLIBS DEVICE VOLID
--
VSE1B3 1998-12-14 1 338ð JSCB5ð

Figure 53. Output Format of Search for a Single Phase (OUTPUT=FULL)

SEARCH DISPLAY
RESULT OF SEARCH DATE 1999-ð1-24
 TIME 12:41
--
 M E M B E R
NAME TYPE LIBRARY SUBLIB CHAIN LOCKID
--
LOCKII4 NOW
 TESTLIB LOCKLIB IT$NOW
INLPLOCK OBJ
 TESTLIB S1 WIN99
LOCKAB PHASE
 TESTLIB S1 WIN99
TESTMOD1 PROC
 TESTLIB S1 WIN99
--
 SUMMARY OF AFFECTED LIBRARIES DATE 1999-ð1-24
 TIME ð8:58
--
 CREATION # OF
 LIBRARY DATE SUBLIBS DEVICE VOLID
--
TESTLIB 1998-12-14 7 338ð JSCB3ð

Figure 54. Output Format of Search for Locked Members (OUTPUT=FULL)

Note: If a library or sublibrary was specified in the SEARCH command the chain
column is left blank. Otherwise, the chain column may show one of the
following:

ACCESS sublibrary was specified in ACCESS command
CONN-FROM FROM-sublibrary in CONNECT command
CONN-TO TO-sublibrary in CONNECT command
PHASE :SRCH sublibrary from LIBDEF PHASE,SEARCH
PHASE :CTLG sublibrary from LIBDEF PHASE,CATALOG
SOURCE:SRCH sublibrary from LIBDEF SOURCE,SEARCH
OBJECT:SRCH sublibrary from LIBDEF OBJ,SEARCH
DUMP :CTLG sublibrary from LIBDEF DUMP,CATALOG

156 IBM VSE/ESA Guide to System Functions

 Using VSE Libraries

Test a Library or Sublibrary
This command is mainly intended as a debugging aid for IBM personnel. You may
use it to find out which library, sublibrary, or member causes an error if a system
message indicates a library defect. To test a library, for example, you may specify

TEST LIB=YOURLIB

The information retrieved by the TEST command is displayed on SYSLOG, when
the command was entered from SYSLOG, or on SYSLST, when the command was
submitted via SYSRDR. The manual VSE/ESA System Control Statements
provides further details about the command under “TEST”.

Unlock a Member
Refer to the description of the LOCK command under “Lock a Member” on
page 141.

Update a Member
The UPDATE command allows modification of library members of any type except
PHASE and DUMP (phases can be updated by using MSHP). Updating is done by
adding, deleting, or replacing lines of the member to be modified but only if the
member is not locked. The following subcommands are provided:

)ADD -- To add lines
)DEL -- To delete lines
)REP -- To replace lines
)END -- To indicate end of the update statement sequence.

The)ADD statement must be followed by the statements to be added and the)REP
statement must be followed by the statements that are to replace existing ones.

Note: For details about the locking function in connection with the UPDATE
command, refer also to “Librarian Handling of IGNLOCK” on page 142.

A time stamp indicates when a member was updated last in addition to the time
stamp indicating when the member was first cataloged. The time stamp information
can be displayed by using the LISTDIR command.

Assume that you want to update source book YBOOK1 of the member type L by
adding, deleting, and replacing lines. The source book is stored in sublibrary
YOURLIB.YSUB1. The job required may look as follows:

 Chapter 4. Using VSE Libraries 157

 Using VSE Libraries

// JOB UPDATE
// EXEC LIBR

(1) ACCESS SUBL=YOURLIB.YSUB1
(2) UPDATE YBOOK1.L SAVE=YBOOK2.L
(3))REP 126ð

OPTNFND CLC ð(1,REGG),BLANKS
(4))REP 129ð,134ð

OPTNCHK CLC ð(5,REGG),=C'PUNCH'
 BE PUNCH
 CLC ð(5,REGG),=C'DSPCH'
(5))ADD 141ð
 PUNCH MVI SWITCH,C'X'
 B CHKOPND
(6))DEL 328ð,329ð
(7))END
 /\
 /&

(1) The ACCESS command defines the sublibrary to be accessed.

(2) The UPDATE command defines first the member to be modified. In addition,
you may optionally use the parameters SAVE,SEQUENCE, and COLUMN.

SAVE=YBOOK2.L causes the Librarian to save the current version of
YBOOK1 under the name YBOOK2.

Since SEQUENCE is not explicitly specified, the default SEQUENCE=10 is
used. After modification, the Librarian re-sequences YBOOK1 (starting with
number 10) using an increment of 10 between each line number.

SEQUENCE=FS would cause no re-sequencing but a check that the line
number sequence is still valid after modification.

SEQUENCE=NO means that no check is performed. For correct modifications
the updates have to be supplied in ascending order.

COLUMN specifies the start and end columns that contain the sequence
number. The defaults are:

columns 77:8ð if SEQUENCE=n or SEQUENCE=NO
columns 73:78 if SEQUENCE=FS

The member in this example will therefore be numbered in columns 77 to 80.

(3) The contents of line number 1260 is replaced by the line following)REP 1260.

(4) The lines numbered 1290 through 1340 are replaced by the three lines
following)REP 1290,1340.

(5) The lines following)ADD 1410 are inserted after line number 1410 in the
member.

(6) The lines numbered 3280 through 3290 are deleted.

(7) Indicates the end of the update statements.

To number an unnumbered member, use the UPDATE command with the SEQ=n
operand (and, if required, the COL operand), followed by an)END subcommand.

158 IBM VSE/ESA Guide to System Functions

 Using VSE Libraries

Programming Interface Information

Library Access for Application Programs
The application program interface (API) of the Librarian provides access to the
objects of VSE libraries for application programs. These objects are:

Library The data file (library) allocation

Sublibrary The logical library description

Member The collection of user data

Chain The concatenation of sublibraries

Access to these objects is provided through the macros LIBRDCB and LIBRM .

 Note

The following information about accessing member data, retrieving status
information, and about return code conventions is intended as introduction to
the code examples provided under “Example of a STATE Member Request” on
page 162 and “Example of OPEN/GET/CLOSE Requests” on page 169. For a
detailed description of the LIBRDCB and LIBRM macros and their functions
refer to the manuals VSE/ESA System Macro Reference and VSE/ESA System
Macro User's Guide.

The macro LIBRDCB defines the central control block for the library interface. In
LIBRDCB you specify, for example, the names of the libraries or sublibraries you
want to access and the characteristics and processing requirements of the library
members which you want to work on.

Note: For details about the locking function in connection with the LIBRM macro,
refer also to “Locking Rules” on page 141 and “Librarian Handling of
IGNLOCK” on page 142.

The various options of the LIBRM macro perform Librarian functions, such as:

LIBDEF Defines a chain of sublibraries.

LIBDROP Drops a chain of sublibraries with a chain ID.

STATE Checks whether a particular member, library, sublibrary, or chain
exists.

DELETE Deletes a member from a sublibrary.

RENAME Renames a member.

OPEN Opens a member for reading/writing of records.

GET Retrieves one or more records of a member in the user's work
area.

PUT Writes one or more records from the user's work area into the
member specified.

NOTE Notes the current position within a member.

 Chapter 4. Using VSE Libraries 159

 Using VSE Libraries

POINT Points to the position within a member noted earlier.

CLOSE Closes a member. No further GET/PUT or NOTE/POINT access is
possible.

LOCK Locks a member with a specified lock ID.

UNLOCK Unlocks a member with a specified lock ID.

Accessing Member Data
The API provides a record I/O (input/output) interface for application programs.

Record I/O enables application programs to access member data, either as records
or substrings (bytes). It is designed to process single records or bytes with GET or
PUT requests.

The amount of data to be read or written can be controlled by the user application.
For string-type members the number of bytes, for record-type members the number
of records can be specified.

Normally, the access is logically sequential but the starting position for GET or PUT
can be altered with a macro option. For PUT this is only possible for string type
members.

Record I/O must be started with an OPEN request. With this OPEN, three types of
processing options can be selected:

OPEN for INPUT Provides a read-only access to an existing member. Only
GET,NOTE and POINT requests are accepted.

OPEN for OUTPUT Provides a write-only access to a new member. The
replacement of an existing member with the same name is
controlled by the REPLACE/NOREPLACE option. Only PUT
requests are accepted.

OPEN for INOUT Provides read/write access to a member. Any PUT requests to
the member are written to a new copy of that member which
replaces the original member at CLOSE time. GET,NOTE and
POINT requests are always working with the original (old)
member data.

With the CLOSE macro, record I/O is terminated. The access to a member is
stopped and all resources owned (such as GETVIS space and locks) are released.
Newly created members become accessible.

Retrieving Status Information
With the STATE function, application programs can retrieve information about the
status of Librarian objects.

STATE member-name,.... Checks whether the specified member exists in a certain
sublibrary or a chain of sublibraries. If it exists, attributes like number of
records (bytes), record format or modification time stamp are returned.

STATE sublib-name,.... Checks whether the specified sublibrary exists in a certain
library. If it exists, attributes like number of members, used space and
delayed space are returned.

160 IBM VSE/ESA Guide to System Functions

 Using VSE Libraries

STATE lib-name,.... Checks whether the specified library exists. Here, the service
returns attributes like number of sublibraries, used and free space, and
the physical file allocation.

STATE chain,....... Checks whether a sublibrary chain exists. If it exits, the
sublibrary names are returned to the caller.

Return Code Conventions
Each API macro passes information back to the invoking program to inform about
the completion of the requested function. This return information consists of three
parts:

� A severity code (Register 15), which gives a global statement about the
success or failure of the requested service. This code is used uniformly
throughout the library access service macros.

� A reason code (Register 0), which informs the caller in detail about any failing
condition or exception.

� A Librarian message Lxxx describing the failure.

In addition, the API provides exits to handle the different levels of errors. An exit
can be specified for the following conditions:

� Object not found

� End of member data

 � Unexpected error

The STATE Member Request example shown in Figure 55 on page 162 is
available as skeleton LIBRSTAT in VSE/ICCF library 59.

 Chapter 4. Using VSE Libraries 161

 Using VSE Libraries

Example of a STATE Member Request

\ \
\ \
\ EXAMPLE FOR THE LIBRARIAN LIBRM SERVICES \
\ \
\ \
\ \
\ Ask for all procedures in a specific sublibrary and process \
\ the returned member attributes. \
\ \
\ LIBRM STATE,ENITITY=MEMBER \
\ \
\ \
 SPACE
APIMONðð START X'78'
 BALR R11,ð ESTABLISH ADDRESSABILITY
 USING \,R11,R12
 LA R12,4ð95(R11)
 LA R12,1(R12) SECOND BASE
 SPACE

LA R13,APIMONS1 SAVE AREA FOR THIS TASK
 SPACE
\ --\
\ STATEMENTS FOR SET UP FIELDS NEEDED FOR LIBRM \
\ E.G. LIBRARY NAME, MEMBER NAME, MEMBER TYPE \
\ --\
 SPACE

MVI APIMEMBN,C'\' MEMBER NAME GENERIC
MVC APIMEMTY(L'APINAMPR),APINAMPR MEMBER TYPE PROC

\
 SPACE

Figure 55 (Part 1 of 7). Code Example for a Librarian STATE Member Request

162 IBM VSE/ESA Guide to System Functions

 Using VSE Libraries

\ --\
\ GET LDCB MAP \
\ --\
 SPACE
 LIBRDCB FUNC=MAP
 SPACE
\ --\
\ ALLOCATE GETVIS FOR LDCB USED IN THIS TASK \
\ --\
 SPACE

LIBRM SHOWCB,CB=LDCB,CBLEN=LEN1 LENGTH OF LDCB
 L Rð,LEN1
\
 SPACE

 SPACE

BNZ APIERR1ð NOT ZERO, WRITE MESSAGE AND EXIT
ST Rð,APISTADL SAVE GETVIS AREA LENGTH
ST R1,APISTADA SAVE LDCB ADDRESS
LR R3,R1 USED FOR ADDRESSING

\ --\
\ GENERATE LDCB \
\ --\
 SPACE
 LIBRDCB FUNC=GEN, \
 AREA=(3), \
 CONT=YES, \
 ERRAD=APIERRðð
\ --\
\ INVOKE STATE MEMBER SERVICE \
\ --\
 SPACE

BAL R1ð,APISTMðð CHECK MEMBER AVAILABILITY
\ --\
\ FREE LDCB SPACE \
\ --\
 SPACE
APISTA95 EQU \

L Rð,APISTADL RELOAD GETVIS AREA LENGTH
L R1,APISTADA RELOAD GETVIS AREA ADDRESS

 SPACE
 FREEVIS ADDRESS=(1),LENGTH=(ð)
 SPACE

LTR R15,R15 FREEVIS RC ZERO
BNZ APIERR2ð NO MESSAGE EXIT

 SPACE
\ --\
\ EOJ AND DUMP EXITS \
\ --\
 SPACE
APIMONEX EQU \
 EOJ
 SPACE
APIMONDP EQU \
 JDUMP
 SPACE

Figure 55 (Part 2 of 7). Code Example for a Librarian STATE Member Request

 Chapter 4. Using VSE Libraries 163

 Using VSE Libraries

\ \
\ \
\ EXAMPLE LIBRM STATE MEMBER \
\ MEMBER NAME = GENERIC \
\ MEMBER TYPE = PROC \
\ \
\ \
 SPACE
APISTMðð EQU \
 LIBRM SHOWCB,CB=MBST,,CBLEN=LEN1

L R4,LEN1 SET LENGTH OF ONE ENTRY
ST R4,APISAVIL SAVE DIRINF LENGTH

APISTM1ð EQU \
L R3,APISTADA RELOAD LDCB ADDRESS
L R4,APISAVIL RELOAD DIRINF LENGTH

 SPACE
 LIBRM STATE, \
 ENTITY=MEMBER, \
 LDCB=(3), \
 LIB=APILIB, \
 SUBLIB=APISUBLB, \
 MEMBER=APIMEMBN, \
 TYPE=APIMEMTY, \
 DIRINF=APIDIRNF, \
 DIRINFL=(4), \
 DIRNO=APIDIRNO, \
 CONT=YES, \
 NOTFND=APISTM3ð, \
 EROPT=RET, \
 ERRAD=APIERRðð
 SPACE

ST R15,APISAVSC SAVE SEVERITY CODE
ST Rð,APISAVRC SAVE REASON CODE
L R6,APISTMMT MESSAGE TABLE FOR STATE MEMBER
BAL R7,APICRCðð CHECK RETURN CODE

 SPACE
\ --\
\ ANALYZE RETURNED INFORMATION \
\ --\
 SPACE
 LA R2,APIDIRNF
 USING INLCMBST,R2 ADDRESSABILITY
APISTM2ð EQU \
 SPACE
\
\ P R O C E S S Returned Entry
\
\
\
\

CLI APISAVSC+3,X'ð4' SEVERITY CODE EQUAL 4
BNER R1ð NO, RETURN TO CALLER
B APISTM1ð YES, GET CONTINUATION

 SPACE
 DROP R2
 SPACE
APISTM3ð EQU \

L R6,APISTMMT MESSAGE TABLE FOR STATE MEMBER
BAL R7,APICRCðð CHECK RETURN CODE

Figure 55 (Part 3 of 7). Code Example for a Librarian STATE Member Request

164 IBM VSE/ESA Guide to System Functions

 Using VSE Libraries

\ SETUP FOR NEXT CALL OR EXIT
 B APIMONEX
 SPACE
\ --\
\ CHECK RETURN CODES FROM SERVICES \
\ INPUT : REGISTER 7 LINK REGISTER \
\ REGISTER 6 MESSAGE TABLE ADDRESS \
\ REGISTER 15 SEVERITY CODE FROM SERVICE \
\ REGISTER ð REASON CODE FROM SERVICE \
\ --\
 SPACE
APICRCðð EQU \ CHECK RETURN CODES
 SLR R4,R4
 LR R5,R4

IC R5,2(R6) GET MAX SEVERITY CODE
CR R15,R5 SEVERITY CODE WITHIN LIMIT

 BH APICRC3ð NO
IC R4,3(R6) GET MAX REASON CODE
CR Rð,R4 REASON CODE WITHIN LIMIT

 BH APICRC3ð NO
LR R2,R6 ADDRESS TABLE ENTRY
LA R2,8(R2) POINT TO FIRST MESSAGE ENTRY
AR R2,R15 CORRECT DISPLACEMENT FOR SC
MVC APICRFL1,ð(R2) GET FLAG BYTE
NI APICRFL1,X'ðF' CLEAR BIT ð-3
SLR R3,R3 CLEAR WORK REGISTER
IC R3,APICRFL1 LOAD POSSIBLE CORRECTION
AR R2,R3 CORRECT TABLE DISPLACEMENT
AR R2,Rð CORRECT DISPLACEMENT FOR RC
TM ð(R2),RCINV INVALID SEVERITY/REASON CODE

 BO APICRC3ð YES
TM ð(R2),RCCON CAN LIVE WITH RC

 BZ APICRC25 YES
LA R7,APIMONEX NO, EXIT AFTER MESSAGE

APICRC25 EQU \
L R1,ð(R2) MESSAGE TEXT ADDRESS

 BAL R8,APIERR94 WRITE MESSAGE
 BR R7 RETURN
 SPACE
APICRC3ð EQU \

LA R1,APIMSGð8 GET MESSAGE ADDRESS
CVD R15,APIRCPAK TRANSLATE SEVERITY CODE
UNPK 21(2,R1),APIRCPAK+6(2) UNPACK
OI 22(R1),C'ð' CORRECT SIGN BYTE
CVD Rð,APIRCPAK TRANSLATE REASON CODE
UNPK 27(2,R1),APIRCPAK+6(2) UNPACK
OI 28(R1),C'ð' CORRECT SIGN BYTE
L R3,ð(R6) GET STRING ADDRESS FROM TABLE
MVC 4(11,R1),ð(R3) SERVICE STRING TO MESSAGE
B APIERR92 WRITE MESSAGE AND EXIT

 SPACE
\ --\
\ ERROR HANDLING FOR RETURN CODE GT 12 \
\ --\
 SPACE
APIERRðð EQU \

ST R15,APISAVSC SAVE SEVERITY CODE
LR R15,Rð GET REASON CODE
LA R1,APIMSGð3 MESSAGE TEXT ADDRESS

Figure 55 (Part 4 of 7). Code Example for a Librarian STATE Member Request

 Chapter 4. Using VSE Libraries 165

 Using VSE Libraries

CLI APISAVSC+3,RC16 IS THIS RC 16
 BE APIERR9ð YES

LA R1,APIMSGð4 MESSAGE TEXT ADDRESS
CLI APISAVSC+3,RC2ð IS THIS RC 2ð

 BE APIERR9ð YES
LA R1,APIMSGð5 MESSAGE TEXT ADDRESS
CLI APISAVSC+3,RC32 IS THIS RC 32

 BE APIERR92 YES
LA R1,APIMSGð6 MESSAGE TEXT ADDRESS
L R15,APISAVSC RELOAD RETURN CODE
B APIERR9ð UNEXPECTED RETURN CODE

 SPACE
\ --\
\ GETVIS AND OTHER ERROR EXITS \
\ --\
 SPACE
APIERR1ð EQU \ NOT ENOUGH GETVIS FOR EXECUTION

LA R1,APIMSGð1 MESSAGE TEXT ADDRESS
 B APIERR9ð
APIERR2ð EQU \ FREEVIS RETURN CODE NOT ZERO

LA R1,APIMSGð2 MESSAGE TEXT ADDRESS
 B APIERR92
APIERR3ð EQU \ NUMBER OF DIRECTORY ENTRIES ZERO

LA R1,APIMSGð7 MESSAGE TEXT ADDRESS
 B APIERR92
 SPACE
\ --\
\ WRITE MESSAGE ON SYSLOG \
\ --\
 SPACE
APIERR9ð EQU \

CVD R15,APIRCPAK TRANSLATE RETURN CODE
UNPK 35(3,R1),APIRCPAK+5(3) UNPACK
OI 37(R1),C'ð' CORRECT SIGN BYTE

APIERR92 EQU \
 LA R8,APIMONDP SET CONTINUATION
APIERR94 EQU \

STCM R1,7,APIERCCW+1 TO ERROR CCW
LA R1,APIERCCB LOAD CORRESPONDING CCB

 SPACE
 EXCP (1) WRITE MESSAGE

WAIT (1) WAIT FOR I/O COMPLETE
BR R8 CONTINUE AS INDICATED

 SPACE
\ --\
\ REGISTER EQUATES \
\ --\
 SPACE
Rð EQU ð
R1 EQU 1
R2 EQU 2
R3 EQU 3
R4 EQU 4
R5 EQU 5
R6 EQU 6
R7 EQU 7
R8 EQU 8
R9 EQU 9

Figure 55 (Part 5 of 7). Code Example for a Librarian STATE Member Request

166 IBM VSE/ESA Guide to System Functions

 Using VSE Libraries

R1ð EQU 1ð
R11 EQU 11
R12 EQU 12
R13 EQU 13
R14 EQU 14
R15 EQU 15
 SPACE
\ --\
\ SAVE AREA DECLARATIONS \
\ --\
 SPACE
 DS ðF
APIMONS1 DC XL72'ðð' MONITOR TASK SAVE AREA
 SPACE
APISAVSC DC F'ð' SEVERITY CODE FROM REG. 15
APISAVRC DC F'ð' REASON CODE FROM REG. ð
RC16 EQU X'1ð' SEVERITY CODE 16
RC2ð EQU X'14' SEVERITY CODE 2ð
RC32 EQU X'2ð' SEVERITY CODE 32
APISTADA DC F'ð' GETVIS LDCB ADDRESS
APISTADL DC F'ð' GETVIS LDCB LENGTH
APISAVIL DC F'ð' SAVE DIRINF LENGTH
LEN1 DC F'ð' TEMP FIELD
 SPACE
\ --\
\ WORKFIELDS \
\ --\
 SPACE
 DS ðD
APIRCPAK DC D'ðð' CVD AREA
 SPACE
\ --\
\ PARAMETER FIELD DEFINITIONS FOR STATE MEMBER \
\ --\
 SPACE
APILIB DC CL7'LIBððð1' REQUESTED LIBRARY
APISUBLB DC CL8'SUBLIBð1' REQUESTED SUBLIBRARY
 SPACE
APIMEMBN DC XL8'ðð' REQUESTED MEMBER NAME
APIMEMTY DC XL8'ðð' REQUESTED MEMBER TYPE
 SPACE
APIDIRNF DC 128F'ð' DIRECTORY INFORMATION
APIDIRNL EQU \-APIDIRNF LENGTH OF DIRINF AREA
APIDIRNO DC F'ð' NUMBER OF RETURNED DIRENTRIES
 SPACE
APINAMPR DC C'PROC' USED FOR MEMBER TYPE
 SPACE
\ --\
\ MESSAGE TABLES \
\ --\
 SPACE
 DS ðF ALIGNEMENT
APISTMMT EQU \ STATE MEMBER MESSAGE TABLE

DC XL4'ðððððCð8' MAX SEVERITY/REASON CODE
DC A(APISTMST) STATE MEMBER CHARACTER STRING
DC AL1(X'ðð'),AL3(APISTMM1) SC ðð RC ðð
DC AL1(X'44'),AL3(APISTMM2) SC ðð RC ð4
DC AL1(X'ð8'),AL3(APISTMM3) SC ð4 RC ðð

Figure 55 (Part 6 of 7). Code Example for a Librarian STATE Member Request

 Chapter 4. Using VSE Libraries 167

 Using VSE Libraries

DC AL1(X'48'),AL3(APISTMM4) SC ð4 RC ð4
DC AL1(X'4ð'),AL3(APISTMM5) SC ð8 RC ðð
DC AL1(X'4ð'),AL3(APISTMM6) SC 12 RC ðð
DC AL1(X'4ð'),AL3(APISTMM7) SC 12 RC ð4
DC AL1(X'4ð'),AL3(APISTMM8) SC 12 RC ð8

 SPACE
APISTMST DC CL11'STATE MEMB ' CHARACTER STRING FOR MESSAGE
APICRFL1 DC X'ðð' WORKFIELD FOR MESSAGE FLAG
RCINV EQU X'8ð' INVALID SEVERITY/REASON CODE
RCCON EQU X'4ð' CAN'T CONTINUE WITH THIS RC
 SPACE
\ --\
\ ERROR MESSAGE DEFINITIONS \
\ --\
 SPACE
 DS ðD
APIERCCB CCB SYSLOG,APIERCCW
APIERCCW CCW X'ð9',APIMSGð1,X'2ð',L'APIMSGð1
 SPACE
APIMSGð1 DC C'API MON : GETVIS FAILED RC = XXX '
APIMSGð2 DC C'API MON : FREEVIS FAILED RC = XXX '
APIMSGð3 DC C'API EXT.SYS ERROR RC = 16 FB = XXX '
APIMSGð4 DC C'API INT.SYS ERROR RC = 2ð FB = XXX '
APIMSGð5 DC C'API ACCESS CONTROL RC = 32 (PREECEDING MSG L163I) '
APIMSGð6 DC C'API UNDEFINED RETURN CODE RC = XXX '
APIMSGð7 DC C'API STATE MEMBER : NO DIRECTORY INFORMATION RETURNED '
APIMSGð8 DC C'API : SC=XX RC=XX UNEXPECTED OR INVALID '
 SPACE
APISTMM1 DC C'API STATE MEMB SC=ðð RC=ðð INFORM.STORED IN DIRINF '
APISTMM2 DC C'API STATE MEMB SC=ðð RC=ð4 DIRINF NOT SPECIFIED '
APISTMM3 DC C'API STATE MEMB SC=ð4 RC=ðð DIRINF TOO SMALL CONT=YES '
APISTMM4 DC C'API STATE MEMB SC=ð4 RC=ð4 DIRINF TOO SMALL CONT=NO '
APISTMM5 DC C'API STATE MEMB SC=ð8 RC=ðð MEMBER NOT FOUND '
APISTMM6 DC C'API STATE MEMB SC=12 RC=ðð SUBLIBRARY DOES NOT EXIST '
APISTMM7 DC C'API STATE MEMB SC=12 RC=ð4 LIBRARY DOES NOT EXIST '
APISTMM8 DC C'API STATE MEMB SC=12 RC=ð8 CHAIN DOES NOT EXIST '
 SPACE
\ --\
\ LIBR MEMBER STATUS INFORMATION BLOCK (DSECT) \
\ --\
 SPACE
 INLCMBST
 END

Figure 55 (Part 7 of 7). Code Example for a Librarian STATE Member Request

168 IBM VSE/ESA Guide to System Functions

 Using VSE Libraries

Example of OPEN/GET/CLOSE Requests

\ \
\ LIBRM OPEN/CLOSE/GET EXAMPLE \
\ \

 SPACE
APIMONðð START X'78'

 \ ESTABLISH ADDRESSABILITY
\ Same as in STATE Member Request

 \
 \ --\
\ INVOKE GET MEMBER SERVICE \

 \ --\
 SPACE

BAL R1ð,APIRDMðð READ A MEMBER
 SPACE
 \ --\
\ FREE LDCB SPACE \

 \ --\
 SPACE

L Rð,APISTADL RELOAD GETVIS AREA LENGTH
L R1,APISTADA RELOAD GETVIS AREA ADDRESS

 SPACE
 FREEVIS ADDRESS=(1),LENGTH=(ð)
 SPACE

LTR R15,R15 FREEVIS RC ZERO
BNZ APIERR2ð NO MESSAGE EXIT

 SPACE
 \ --\
\ EOJ AND DUMP EXITS \

 \ --\
 SPACE
 APIMONEX EQU \
 EOJ
 SPACE
 APIMONDP EQU \
 JDUMP
 SPACE
\ \
\ EXAMPLE LIBRM GET MEMBER \
\ GET AT LEAST 3 RECORDS \
\ \

 SPACE
 APIRDMðð EQU \
 SPACE
 \ --\
\ MODIFY LDCB FOR GET MEMBER REQUEST \

 \ --\
 SPACE
 LIBRDCB FUNC=MOD, \
 AREA=(3), \
 LIB=GETLIB, \

Figure 56 (Part 1 of 4). Code Example for Librarian OPEN/GET/CLOSE Requests

 Chapter 4. Using VSE Libraries 169

 Using VSE Libraries

 SUBLIB=GETSUBLB, \
 MEMBER=GETMEMBN, \
 TYPE=GETMEMTY, \
 DIRINF=GETDIRNF, \
 DIRINFL=GETDIRNL, \
 BUFFER=GETBUFER, \
 BUFSIZE=GETBUFLN, \
 RECNO=ð, \
 UNITS=ð, \
 EROPT=RET, \
 ERRAD=APIERRðð
 SPACE
 \ --\
\ LIBR OPEN TYPEFLE=INPUT \

 \ --\
 SPACE
 APIOPNðð EQU \
 LIBRM OPEN, \
 TYPEFLE=INPUT, \
 NOTFND=APIOPN2ð, \
 LDCB=(3)
 SPACE

L R6,APIOPNMT MESSAGE TABLE FOR OPEN
BAL R7,APICRCðð CHECK RETURN CODE

 SPACE
LA R2,GETDIRNF POINT TO MEMBER DIRECTORY INFO

 USING INLCMBST,R2 SET ADDRESSABILITY
 SPACE
\ MEMBER INFORMATION CAN BE RETRIEVED FROM THE
\ INFORMATION STORED IN DIRECTORY INFORMATION FROM

 \ OPEN
\ MVC,MBSTNORL SAVE NO OF RECORDS
\ MVC,MBSTRLEN SAVE LOGICAL RECORD LENGTH
\ MVC,MBSTRCFM SAVE RECORD FORMAT

 DROP R2 RELEASE INLCMBST
 SPACE

B APIGETðð GET FULL OR PART OF MEMBER
 APIOPN2ð EQU \

L R6,APIOPNMT MESSAGE TABLE FOR OPEN
BAL R7,APICRCðð CHECK RETURN CODE

\ SETUP FOR NEXT CALL OR EXIT
 B APIMONEX
 SPACE
 \ --\
 \ LIBR GET \
 \ --\
 SPACE
 APIGETðð EQU \

LA R2,1 SET UNITS TO 1 BYTE/RECORD
SLR R4,R4 SET STARTING BYTE/RECORD

 SPACE
 LIBRM GET, \
 LDCB=(3), \
 RECNO=(4), \
 UNITS=(2), \
 MOVELEN=GETMOVEL
 SPACE

Figure 56 (Part 2 of 4). Code Example for Librarian OPEN/GET/CLOSE Requests

170 IBM VSE/ESA Guide to System Functions

 Using VSE Libraries

L R6,APIGETMT MESSAGE TABLE FOR GET
BAL R7,APICRCðð CHECK RETURN CODE

 SPACE
 APIGET1ð EQU \
\ COMPARE RECORD CONTENTS
\ OR SAVE CONTENTS FOR

 \ LATER USE
 SPACE
 \ --\
 \ LIBR CLOSE \
 \ --\
 SPACE
 APICLOðð EQU \
 LIBRM CLOSE, \
 LDCB=(3), \
 COMMIT=YES
 SPACE

L R6,APICLOMT MESSAGE TABLE FOR CLOSE
BAL R7,APICRCðð CHECK RETURN CODE

 BR R1ð RETURN
 SPACE
 \ --\
\ CHECK RETURN CODES FROM SERVICES \
\ INPUT : REGISTER 7 LINK REGISTER \
\ REGISTER 6 MESSAGE TABLE ADDRESS \
\ REGISTER 15 SEVERITY CODE FROM SERVICE \
\ REGISTER ð REASON CODE FROM SERVICE \

 \ --\
 SPACE
APICRCðð EQU \ CHECK RETURN CODES

 \
\ as in “Example of a STATE Member Request” on page 162

 \ --\
\ ERROR HANDLING FOR RETURN CODE GT 12 \

 \ --\
 SPACE
 APIERRðð EQU \
 \
\ as in “Example of a STATE Member Request” on page 162

 \ --\
\ GETVIS AND OTHER ERROR EXITS \

 \ --\
 SPACE
 \
\ as in “Example of a STATE Member Request” on page 162

 \ --\
\ WRITE MESSAGE ON SYSLOG \

 \ --\
 SPACE
 \
\ as in “Example of a STATE Member Request” on page 162

 \ --\
 \ REGISTER EQUATES \
 \ --\
 SPACE
 \
\ as in “Example of a STATE Member Request” on page 162

 \
 SPACE

Figure 56 (Part 3 of 4). Code Example for Librarian OPEN/GET/CLOSE Requests

 Chapter 4. Using VSE Libraries 171

 Using VSE Libraries

 \ --\
\ SAVE AREA DECLARATIONS \

 \ --\
 SPACE
\ as in “Example of a STATE Member Request” on page 162

 SPACE
 \ --\
 \ WORKFIELDS \
 \ --\
 SPACE
\ as in “Example of a STATE Member Request” on page 162

 SPACE
 \ --\
\ PARAMETER FIELD DEFINITIONS FOR STATE MEMBER \

 \ --\
 SPACE
\ as in “Example of a STATE Member Request” on page 162

 SPACE
 \ --\
\ PARAMETER FIELD DEFINITIONS FOR GET MEMBER \

 \ --\
 SPACE
 GETLIB DC CL7'LIBððð2' REQUESTED LIBRARY
 GETSUBLB DC CL8'SUBLIBð2' REQUESTED SUBLIBRARY
 SPACE
GETMEMBN DC CL8'MEMBERð1' REQUESTED MEMBER NAME
GETMEMTY DC CL8'PROC ' REQUESTED MEMBER TYPE

 SPACE
 GETDIRNF DC 256X'ðð' DIRECTORY INFORMATION
GETDIRNL EQU \-GETDIRNF LENGTH OF DIRINF AREA

 GETMOVEL DS F RECORDS/BYTES TRANSFERED
GETBUFER DC 1ðXL8ð'ðð' BUFFER TO CONTAIN DATA

 GETBUFLN EQU \-GETBUFER BUFFER LENGTH
 SPACE
 \ --\
 \ MESSAGE TABLES \
 \ --\
 SPACE
\ similar to “Example of a STATE Member Request” on page 162

 SPACE
 \ --\
\ ERROR MESSAGE DEFINITIONS \

 \ --\
 \
\ similar to “Example of a STATE Member Request” on page 162

 \ --\
\ LIBR MEMBER STATUS INFORMATION BLOCK (DSECT) \

 \ --\
 INLCMBST
 END

Figure 56 (Part 4 of 4). Code Example for Librarian OPEN/GET/CLOSE Requests

End of Programming Interface Information

172 IBM VSE/ESA Guide to System Functions

 Using VSE Libraries

Processing Macros with the ESERV Program
Assembler programs that were assembled with the DOS/VSE Assembler could use
two types of source books (macros): A and E. Since the DOS/VSE Assembler has
been replaced by the High Level Assembler, E-Deck processing is different.
E-Deck refers to a macro (source book) of type E. The High Level Assembler
cannot create E-Decks but can process existing E-Decks through an exit provided
by VSE/ESA. The exit is described in detail under “Using the High Level Assembler
Library Exit for Processing E-Decks” on page 174.

All macro definitions of type E have been preprocessed by the DOS/VSE
Assembler; they are said to be edited. Edited macros cannot be updated directly,
they must first be converted to A-Books.

You can use the ESERV program to convert an edited macro (E) back to source
format (A): this is called de-editing. If the output is to be cataloged directly as
source book of type A, you can specify the GENCATALS control statement. This
causes a catalog statement for the Librarian (LIBR) program to be generated before
each macro and a /* card after the last macro. If the GENCATALS control
statement is not specified after the // EXEC ESERV statement, GENCATALS is
assumed.

You can de-edit and update a macro in a single job stream by including the
necessary update control statements. The following job stream example converts a
macro of type E back into a macro of type A (de-editing), updates it, and catalogs
the macro as source book of type A into the sublibrary specified. A listing of the
updated macro on SYSLST is also created.

\ $$ JOB JNM=EXAMPL,CLASS=C,DISP=D
\ $$ PUN DISP=I
// JOB EXAMP1
// OPTION DECK
// EXEC ASMA9ð,SIZE=ASMA9ð

PUNCH '// JOB EXAMP2'
PUNCH '// EXEC LIBR'
PUNCH 'ACCESS S=lib.sublib'

 END
/\
// EXEC ESERV
 DSPCH E.macroname
 .
 .

update control statements
 .
 .
/\
/&
\ $$ EOJ

Notes:

 1. The statement

\ $$ PUN DISP=I

creates automatically a new job with the statements following it and places the
created job into the VSE/POWER reader queue for processing.

 Chapter 4. Using VSE Libraries 173

 Using VSE Libraries

 2. With no

update control statements

included, the job stream just converts the specified macro of type E into type A
and catalogs it into the sublibrary specified.

Under “Edited Macro Service Program”, the manual VSE/ESA System Control
Statements describes the ESERV control statements available. For ESERV
information on de-editing and updating macro definitions, you may still consult the
Guide to the DOS/VSE Assembler

High Level Assembler Considerations
Starting with VSE/ESA 2.1, the DOS/VSE Assembler is no longer part of VSE/ESA.
It has been replaced by the High Level Assembler.

The statement

// EXEC ASMA9ð....

calls the High Level Assembler. A complete statement is shown below under “Using
the Exit” on page 175. Refer also to the migration chapter in the VSE/ESA
Planning manual under “Changing from DOS/VSE Assembler to High Level
Assembler” for additional details about calling the High Level Assembler.

Since the High Level Assembler itself cannot process E-Decks, VSE/ESA provides
an exit (EDECKXIT) for this purpose. If your programs use E-Decks (created by the
DOS/VSE Assembler), you have to activate this exit when calling the High Level
Assembler as discussed in detail below.

Programming Interface Information

Using the High Level Assembler Library Exit for Processing E-Decks
The High Level Assembler cannot process E-Decks (as the DOS/VSE Assembler
could). For that reason, VSE/ESA provides a library exit for the High Level
Assembler to enable the processing of E-Decks. Once activated, the High Level
Assembler branches to it whenever it has to process a macro call. The exit
analyses the macro and in case of an E-Deck calls the ESERV program. ESERV
changes, line by line, the E-Deck definitions back into source code which the High
Level Assembler can then process.

Tailoring the Exit
The library exit is a general interface to the High Level Assembler for macro
processing. The specialized exit for E-Deck processing is shipped as phase
EDECKXIT in PRD1.BASE. If you want to modify the exit or add new functions, you
can use skeleton SKEDECKX which is stored in VSE/ICCF library 59. The
skeleton, as shipped, only establishes the interface to the ESERV program and
provides support for E-Deck conversion. The skeleton includes detailed comments
on how to use it and explains the setup and the working of the exit.

174 IBM VSE/ESA Guide to System Functions

 Using VSE Libraries

Using the Exit
To activate the exit, you must specify the name of the exit, EDECKXIT, in the
EXEC statement calling the High Level Assembler:

// EXEC ASMA9ð,SIZE=(ASMA9ð,64K),PARM='EXIT(LIBEXIT(EDECKXIT))'

The 64K are used for loading the ESERV program. The exit establishes the
interface to ESERV via phase IPKVX, which is further discussed under “Function
Description of Phase IPKVX” on page 178.

E-Deck Processing :

As long as macros in E-Deck format are used by programs, the High Level
Assembler must be activated with the library exit (EDECKXIT) capable of
translating E-Decks back into source format.

The EDECKXIT has an invocation parameter: ORDER E/A, which is the default, or
ORDER A/E.

� E/A means, that EDECKXIT searches all sublibraries of the whole LIBDEF
chain of type SOURCE for the respective macro in E-Deck format. If found, the
E-Deck is translated back into source format and passed as input to the High
Level Assembler. If no E-Deck is found, the A-Book format of the macro is
searched for.

� A/E means, that EDECKXIT searches for macro type A first and then (if not
found) for type E.

Among others, the following error situations may occur:

1. EDECKXIT needs GETVIS storage for its own processing and for that reason
an area of 50K is reserved. If that size is not sufficient, EDECKXIT issues the
message:

ERROR IN LIBR STATE

In this case, increase the value of the assembler variable &GVLEN in skeleton
SKEDECKX (set to 50*1024 by default) and regenerate EDECKXIT.

2. The partition is too small for an assembly run, because:

EDECKXIT needs more GETVIS storage (see above), or the
High Level Assembler itself needs more GETVIS storage.

In this case, increase the partition size.

For a complete list of error messages, refer to “Error Messages Issued by
EDECKXIT” on page 176.

Modifying User Macros :

The following applies when existing E-Decks need to be modified.

Macros to be modified must be in A-Book format. E-Decks to be modified must
therefore first be converted into A-Books (as shown in the job stream example
under “Processing Macros with the ESERV Program” on page 173). For assembly
runs using EDECKXIT (because older macros are still in E-Deck format), the
following must be considered when changing a macro.

 Chapter 4. Using VSE Libraries 175

 Using VSE Libraries

� If EDECKXIT is invoked with ORDER E/A:

1. If the macro to be changed exists only in E-Deck format, proceed as
follows:

a. Convert the E-Deck to an A-Book via the ESERV program.

b. Delete the E-Deck, otherwise EDECKXIT will continue using it.

c. Modify the A-Book.

2. If the macro to be changed exists only in A-Book format:

Modify the A-Book.

3. If the macro to be changed exists in both formats, proceed as follows:

a. Ensure that the E-Deck and the A-Book are logically equivalent (if not,
delete the A-Book and proceed as described under 1 above).

b. Delete the E-Deck.

c. Modify the A-Book.

� If EDECKXIT is invoked with ORDER A/E:

1. If the macro to be changed exists only in E-Deck format, proceed as
follows:

a. Convert the E-Deck to an A-Book via the ESERV program.

b. Deleting the E-Deck is not absolutely required (but advised) since A/E
will always select the A-Book version of the macro.

c. Modify the A-Book.

2. If the macro to be changed exists only in A-Book format:

Modify the A-Book.

3. If the macro to be changed exists in both formats:

Modify the A-Book and consider deleting the E-Deck.

Error Messages Issued by EDECKXIT
EDECKXIT issues error messages in case of problems. The message text appears
as part of the High Level Assembler message ASMA940U . The following list
provides explanations for possible EDECKXIT error messages.

CALLED FOR WRONG EXIT TYPE: xx
Explanation : EDECKXIT can only be specified as a "library exit" to the
High Level Assembler. EDECKXIT was specified as the name of an exit
which is not a library exit. The value given for TYPE identifies the wrong
type of exit called for.

GETVIS FAILURE, RC=xx
Explanation : This indicates a storage problem related to the partition
GETVIS area. The value issued for RC is the return code from the
GETVIS macro (in hexadecimal). If RC indicates "not enough storage",
increase the partition size.

INPUT NOT "ORDER=EA" NOR "ORDER=AE"
Explanation : In the call for the High Level Assembler, an invalid
specification for the ORDER parameter was given.

176 IBM VSE/ESA Guide to System Functions

 Using VSE Libraries

CDLOAD OF IPKVX FAILED, RC=xx
Explanation : The problem is related to the loading of phase IPKVX into
the partition GETVIS area. The value issued for RC is the return code
from the CDLOAD macro (in hexadecimal). Possible reasons for the
error are "phase not found" or "partition GETVIS area too small".

ERROR IN LIBR STATE, RC=xx
Explanation : This indicates a problem related to the Librarian API
(application program interface). The value issued for RC is the return
code (2 bytes) and the reason code (2 bytes) from the Librarian in
hexadecimal format. A value of X'00100064' indicates a shortage of
partition GETVIS storage. In this case, increase the value of the
assembler variable &GVLEN in skeleton SKEDECKX (set to 50*1024 by
default) and regenerate EDECKXIT.

macro NOT A VALID EDECK
Explanation : The named "macro" is not a valid EDECK.

The following error situations are unlikely to occur. Contact IBM for support if you
get such an error and you cannot identify its cause.

ESERV INIT FAILED, RC=xx
Explanation : ESERV initialization failed. The value issued for RC
originates from the INIT function of IPKVX (in hexadecimal).

ESERV LOAD FAILED, RC=xx
Explanation : The loading of ESERV into the program area of the
partition failed. The value issued for RC is the return code from the
LOAD macro (in hexadecimal).

ESERV FIND FAILED, RC=xx
Explanation : The EDECK to be processed cannot be read. The value
issued for RC originates from the FIND function of IPKVX (in
hexadecimal).

ESERV READ FAILED, RC=xx
Explanation : The EDECK cannot be processed. The value issued for
RC originates from the READ function of IPKVX (in hexadecimal).

ERROR IN STACK HANDLING
Explanation : This indicates a problem related to the register save stack
of this module. Probably the value set for the variable &DEPTH of
EDECKXIT is too small.

FREEVIS FAILURE, RC=xx
Explanation : This indicates a storage problem related to the partition
GETVIS area. The value issued for RC is the return code from the
FREEVIS macro (in hexadecimal).

CALLED FOR BAD REQUEST TYPE: xx
Explanation : The High Level Assembler called the exit with a request
type not known to EDECKXIT. The value given for TYPE (in
hexadecimal) identifies the wrong request type called for.

End of Programming Interface Information

 Chapter 4. Using VSE Libraries 177

 Using VSE Libraries

Programming Interface Information

Function Description of Phase IPKVX
The following description provides background information useful if exit tailoring is
required. Phase IPKVX has the following characteristics:

It is not reentrant.
It has an RMODE and AMODE of 24.

The phase provides the functions INIT, FIND, READ, and TERM which are
activated with the statement

BAL 14,OFFSET(15)

where the contents of register 15 is the entrypoint of IPKVX (as returned by
CDLOAD, for example).

INIT Function (Offset=0)
The INIT function loads ESERV into the program area of the calling partition and
starts ESERV to perform initialization.

ESERV uses up the remaining program area of the calling partition. This means,
that after an INIT up to the next TERM the caller must not load any further code
into the partition's program area otherwise unpredictable results may occur.

ESERV requires two workfiles, IJSYS01 and IJSYS02. If the related logical units
(SYS001, SYS002) are not assigned, the function terminates unsuccessfully.

Required Input: Register 13 must specify whether processing is to be initialized
for E-Decks or F-Decks.

R13=0: E-Deck processing
R13=1: F-Deck processing

Other values are rejected.

Note: F-Decks are macros needed for NCP (Network Control Program)
generation.

Return Codes for Function INIT (Register 15)

RC=4 Invalid input in Register 13. Initialization was not performed.

RC=8 ESERV could not be loaded. Register 13 contains the return code of the
LOAD request.

RC=12 ESERV was loaded but could not initialize successfully. There may be
several reasons, a console message is issued. Examples are:

The work files are not assigned correctly.
The program area of the partition is too small.

178 IBM VSE/ESA Guide to System Functions

 Using VSE Libraries

FIND Function (Offset=4)
The FIND function tells ESERV which macro is to be processed next. ESERV tries
to locate the E-Deck format of the macro in the active LIBDEF source chain, and if
successful converts the macro into source format.

Required Input: Register 13 must point to an 8-byte area containing one macro
name.

Return Codes for Function FIND (Register 15)

RC=4 ESERV could not find the EDECK, or the found EDECK is not valid, or
the specified macro name is not allowed. If further diagnostics are
needed, ESERV must be run and its output must be analyzed.

RC=8 INIT was not run successfully before.

RC=12 ESERV experienced a run-time problem. There may be several reasons;
a console message is issued in addition.

READ Function (Offset=8)
The READ function returns the next sequential line of source code of the macro
being converted.

Required Input: Register 13 must point to an 80-byte area which is to receive
one line of source code.

Return Codes for Function READ (Register 15)

RC=4 No more data; the last line has already been returned in a previous
READ operation.

RC=8 FIND was not run successfully before.

RC=12 ESERV experienced a run-time problem. There may be several reasons;
a console message is issued in addition.

TERM Function (Offset=12)
The TERM function tells ESERV to terminate.

There is no input required.

Return Codes for Function TERM (Register 15)

RC=12 ESERV experienced a run-time problem. There may be several reasons;
a console message is issued in addition.

End of Programming Interface Information

 Chapter 4. Using VSE Libraries 179

 Using VSE Libraries

180 IBM VSE/ESA Guide to System Functions

 Linking Programs

 Chapter 5. Linking Programs

This chapter describes the basic functions of the Linkage Editor and the
linking of programs for a 24-bit environment. If you use enhanced functions
such as the VSE/ESA 31-bit addressing support, you must in addition consult
the manual VSE/ESA Extended Addressability under “Linkage Editor Support for
31-Bit Addressing” which describes the Linkage Editor support for programs that
use such functions.

Before a program can run, it must be processed by the Linkage Editor. This section
briefly discusses the role of the Linkage Editor and describes how you can
communicate with it through control statements.

The Linkage Editor prepares a program for execution by link editing the output of a
language translator into one or more executable phases.

A program can be link edited into one or more phases and either

� stored temporarily and executed immediately (one phase only), or

� cataloged permanently and executed repeatedly.

If the phase is stored temporarily and executed immediately, the linkage editor is
required again the next time the phase is to be run. If a phase is cataloged
permanently, the Linkage Editor is no longer required for that phase, because the
supervisor can load it directly from the sublibrary in response to an EXEC job
control statement, or a FETCH or LOAD macro.

Phases are either stored temporarily or cataloged permanently, depending on the
option specified in the OPTION job control statement:

// OPTION LINK

causes the Linkage Editor to store the generated (single) phase temporarily in the
VIO area for immediate execution in the same job. This phase is no longer
available when the linkage editor starts processing the next phase.

// OPTION CATAL

causes the Linkage Editor to catalog the generated phase permanently in the
sublibrary specified in the current LIBDEF PHASE,CATALOG... statement for the
partition in which the Linkage Editor job runs. This phase can be executed any time
after the link edit run.

The Linkage Editor may run in any partition, and the phases produced by the
Linkage Editor are executable in any partition. The linkage editor can be active in
more than one partition concurrently without endangering the integrity of your
sublibraries. This holds true even if each Linkage Editor run updates (that is,
catalogs into) the same sublibrary. The Linkage Editor passes the following return
codes to job control:

 Copyright IBM Corp. 1984, 1999 181

 Linking Programs

ð = successful
2 = warning message issued but phases are cataloged
4 = warning or error message issued but phases are cataloged
8 = single phase not replaced
16 = severe error(s), phases are not cataloged

Note: If the linked phase contains only unresolved address constants for external
symbols identified by the WXTRN assembler instruction, the Linkage Editor
returns (starting with VSE/ESA 1.3.0) return code 2 (instead of return code
4 as in previous releases).

Structure of a Program
To understand the functions of the Linkage Editor, you must understand the
structure of a program during the various stages of its development. The following
sections discuss source books, object modules, and phases as summarized below.

Stages of Program Development

1. A set of source statements is to be processed by a language translator.

The source statements might first be cataloged as a book into a sublibrary.

2. The output of the language translator, an object module , can be processed
by the Linkage Editor.

The language translator output might first be cataloged as a module into a
sublibrary.

3. The output of the linkage editor, a phase , is either stored temporarily into
the VIO (virtual input/output) area or is cataloged permanently into a
sublibrary.

To catalog a source book or an object module, the Librarian must be used. A
phase, however, is cataloged by the Linkage Editor directly.

 Source Books
After planning an application, a programmer writes a set of source statements in a
programming language. This set of source statements is processed by a language
translator. The language translator assembles source statements written in
assembler language, or it compiles source modules written in a high-level
language (for example, COBOL, PL/I, or RPG II). The language translator
transforms the source into an object module, which is in machine language.

You can either submit your source, consisting of one or more control sections
(CSECTs), directly to the language translator for processing, or you can catalog it
as a source book into a sublibrary for later processing by the language translator.

 Using Macros
In a VSE environment two member types of macros may exist:

A for macros in source format;
E for edited macros which have been created by the DOS/VSE Assembler.

182 IBM VSE/ESA Guide to System Functions

 Linking Programs

Since the DOS/VSE Assembler has been replaced by the High Level Assembler,
the processing of edited macros is different. Refer to “Processing Macros with the
ESERV Program” on page 173 for details.

 Object Modules
Language translators process source code and produce output in the form of object
modules. These modules need to be processed by the Linkage Editor to become
executable phases. During the link-editing of a module, other modules may have to
be included. If so, the Linkage Editor searches the sublibraries specified for the
modules in question. In this way, sections of code that are used by a number of
different programs need to be written, translated, and cataloged in object format
only once.

An object module, the output of a language translator, consists of dictionary and
text records as shown in Figure 57.

For more information about these records refer to “Language Translator Modules”
in the manual VSE/ESA System Control Statements.

A B

0 4Byte 1

Figure 57. Record Types of an Object Module

A contains X'02' and identifies the record as one of an object module.
B indicates the record type and can be one of the following:

� C'ESD' - External symbol dictionary. It contains symbols defined in this
module and referred to by one or more other modules and symbols referred
to in this module but defined in another module.

� C'TXT' - Text. Contains actual code plus control information needed by the
Linkage Editor.

� C'RLD' - Relocation list dictionary. Identifies those portions of the text which
must be modified when the program is relocated for execution.

� C'END' - End of module. Indicates the end of a module. The record may
contain an address where the execution is to begin (transfer address) or
the length of the control section or both.

Occasionally, there may be a need to change the information contained in a TXT
record. You can prepare a REP (user replace) statement and submit it with your
object module for processing by the Linkage Editor. A REP statement must be
submitted between the TXT record it modifies and the END record.

Cataloging Multiple Object Modules into One Member
In a Linkage Editor run, you can use the INCLUDE statement to catalog a phase
composed of multiple object modules as discussed later in this chapter. You can
also catalog several object modules as a single library member which is then called
a multiple-object member. This is discussed in detail under “Cataloging Multiple
Object Modules” on page 123.

 Chapter 5. Linking Programs 183

 Linking Programs

Retrieving a Multiple-Object Member: The complete multiple-object file in an
OBJ member is included by the Linkage Editor when the name of the member is
specified in the INCLUDE statement. It is not possible to include only one object
module of a multiple-object file.

Including Parts of Modules: If you want to catalog a phase consisting of
selected control sections (CSECTs) of an object module, use the INCLUDE
statement with its “namelist” parameter. In a multiple-object file, you can select
control sections of the first object module only.

 Phases
The Linkage Editor produces a phase from the object module(s) you identify in
Linkage Editor control statements. A phase is the functional unit that the system
loader can load for processing into a partition in response to a single EXEC job
control statement (or a FETCH or a LOAD macro instruction in an assembler
language program).

In the PHASE control statement you instruct the Linkage Editor to produce a phase
of either relocatable, self-relocating, or non-relocatable type. If a phase built by the
Linkage Editor includes areas defined by DS (define storage), those areas are set
to zeros.

 Relocatable Phases
A phase is relocatable if it can be loaded for execution in any partition. The
Linkage Editor produces a relocatable phase, unless you specify an absolute origin
(load) address. IBM recommends that you always specify a relative origin address.
A relative load address is represented by a symbol with or without a displacement.

If a relocatable phase is also designed as a re-enterable phase, it is eligible to be
loaded into the shared virtual area (SVA). Phases resident in the SVA can be
shared concurrently by programs running in either real or virtual mode.

 Self-Relocating Phases
Before a loader with the relocating capability became available, some programmers
coded self-relocating programs in order to gain the advantages of relocatability. If
you have to perform maintenance on such a program, you must write this program
in assembler language according to the rules described in VSE/ESA System Macro
User's Guide under “Writing Self-Relocating Programs”. In the PHASE control
statement you indicate an origin address of +0. The program must relocate all its
addresses at execution time to correspond with the addresses available in the
partition in which the program is loaded.

 Non-Relocatable Phases
A non-relocatable phase is link edited to be loaded at a specific location (absolute
address) associated with a partition. When you request execution of a
non-relocatable phase in a given partition, the starting and ending addresses of the
phase must be included within that partition. Otherwise, the job is canceled. If you
wish to execute a non-relocatable phase in more than one partition, you must
catalog a separate copy of the phase for each partition.

184 IBM VSE/ESA Guide to System Functions

 Linking Programs

Year 2000 Support
The linkage editor extends the year representation to 4 digits (retrieved from field
JOBDATE in partition COMREG). Programs scanning the printout of the linkage
editor may have to be adapted because of the new date format.

There is one exception to this rule. The linkage editor will not use 4 digits to display
the year if the // DATE job control statement has been used, specifying only 2 digits
for the year. In this case, the header lines also show a 2-digit year (from field
JOBDATE in COMREG).

The following changes apply:

1. One header line is printed on each new page on SYSLST when reading input
from SYSLNK and printing input statements on SYSLST. This header line
contains the date with a 4-digit year, instead of 2 digits followed by 2 blanks.
The rest of the header line and all the following lines remain unchanged.

2. One header line is printed on each new page on SYSLST when printing the
linkage editor map, displaying phase names, CSECT names, linked module
names and so on. In this header line, the date is contained in the very first 8
bytes (digits and slashes), followed by just one blank before the next header
text (PHASE) begins.

If 4 digits are displayed for the year, the date is displayed using 10 bytes
instead of 8 bytes. The next header text (PHASE) following the date is moved 2
bytes to the right.

Basic Applications of the Linkage Editor
The three basic applications of the Linkage Editor are:

� Link-editing and cataloging phases into a sublibrary;

� Link editing and executing;

� Assembling (or compiling), link editing, and executing.

Following is an overview of these applications. For detailed job stream examples
refer to the section “Examples of Linkage Editor Applications” later in this chapter.

Cataloging Phases into a Sublibrary
When you have a program which you expect to use frequently, you should catalog
it permanently as a PHASE-type member in a sublibrary. You can do this as shown
in the skeleton job below:

 Chapter 5. Linking Programs 185

 Linking Programs

(1) // JOB CATALOG
(2) // LIBDEF PHASE,CATALOG=library.sublibrary
(3) // OPTION CATAL
(4) ACTION ...
(5) PHASE ...
(6) INCLUDE
 ...
 ... object
 ... module(s)
 ...
 /\
(7) ENTRY
(8) // EXEC LNKEDT
 /&

Except for the object module(s) and the /* statement, which are read from
SYSIPT, all other statements are read from SYSRDR.

Figure 58. Job Stream to Catalog a Program Permanently into a Sublibrary

(1) Job statement.

(2) The phase produced by the Linkage Editor will be cataloged into the
sublibrary specified here.

(3) // OPTION CATAL causes the Linkage Editor to catalog the generated phase
permanently in the applicable sublibrary.

Job control writes the input from the SYSRDR device into the disk extent that
is assigned to SYSLNK.

(4) ACTION is used to specify Linkage Editor options.

(5) When a phase is to be cataloged permanently, the PHASE statement is
mandatory.

(6) An INCLUDE without an operand indicates that job control is to read one or
more object modules from SYSIPT.

(7) An ENTRY statement signals to job control the end of input for the Linkage
Editor. This statement is optional.

(8) The statement causes the Linkage Editor to be loaded into the particular
partition.

A phase cataloged as SVA eligible (operand in the linkage editor PHASE
statement) is loaded into the SVA if it is cataloged in the system sublibrary
IJSYSRS.SYSLIB, and:

� A phase of that name is already stored in the SVA, or

� A phase of that name has been requested to be loaded into the SVA (via the
SET SDL command).

Also, if the phase has an entry in the SDL, that entry is updated.

186 IBM VSE/ESA Guide to System Functions

 Linking Programs

Link-Edit and Execute
You do not always need to catalog a permanent copy of your program into a
sublibrary in order to execute the program. For instance, if you have modified parts
of your program and want to test these modifications, you can request the linkage
editor to store the program temporarily in either a test sublibrary or in the VIO, the
virtual I/O area (one phase only).

Using a Test Sublibrary
The following steps are required:

1. Create a test sublibrary with DEFINE SUBLIB=lib.sublib and
REUSE=IMMEDIATE.

2. Link-edit your programs with // OPTION CATAL as often as needed (library
space is reused when phases are replaced).

3. Execute the link-edited programs with LIBDEF PHASE,SEARCH=lib.sublib.

4. After completion of the test, copy the phases from the test sublibrary into the
production sublibrary. This requires one link-edit run less than with the OPTION
LINK approach below.

5. If required, delete the test sublibrary with DELETE SUBLIB=lib.sublib.

Using the Virtual I/O Area
Figure 59 illustrates how the job in Figure 58 on page 186 is to be changed for
such a run.

// JOB TEMP
(1) // OPTION LINK
 ACTION
 INCLUDE
 ...
 ... object
 ... module(s)
 ...
 /\
 ENTRY

// EXEC LNKEDT
(2) // EXEC
 /&

Except for the object module(s) and the /* statement which are read from
SYSIPT, all other statements are read from SYSRDR.

Figure 59. Job to Link-Edit and Store a Program Temporarily for Immediate Execution

Note: No LIBDEF statement is needed, because the phase generated is not
stored in a sublibrary but in the VIO, the virtual I/O area (one phase only).

(1) // OPTION LINK indicates to the Linkage Editor that the generated phase is to
be stored temporarily in the virtual I/O area for execution immediately after
this job is completed. The // OPTION CATAL statement may be used instead
of the // OPTION LINK statement. The program would then be cataloged
permanently in a sublibrary and also executed after job completion. When
// OPTION CATAL is specified a PHASE statement is required.

 Chapter 5. Linking Programs 187

 Linking Programs

(2) // EXEC (without a program name operand) causes the program to be loaded
for execution.

Assemble (or Compile), Link-Edit, and Execute
You can also combine the job steps described above with a job step for assembling
or compiling your source program. This is especially useful when you are
developing a program. Figure 60 shows how your job should be set up.

// JOB TEST
(1) // OPTION LINK
(2) // EXEC ASMA9ð....,GO
 ...
 ... source
 ... code
 ...
 /\
 /&

Figure 60. Job to Assemble, Link-Edit, and Execute a Program Stored Temporarily

Note: The statement

// EXEC ASMA9ð....

 calls the High Level Assembler. Refer to “High Level Assembler
Considerations” on page 174 for further details.

Except for the source code and the /* statement which are read from SYSIPT, all
other statements are read from SYSRDR.

(1) // OPTION LINK causes the assembler to write the object module created on
SYSLNK.

(2) GO in the EXEC statement causes the Linkage Editor to use the object
module stored on SYSLNK as input for a link-edit run. Moreover, after
link-editing the phase is stored temporarily in the virtual I/O area and is
executed once. Without the GO parameter an additional // EXEC LNKEDT
and // EXEC statement would be required for achieving the same result. The
GO parameter has the same effect when working with other VSE language
translators.

For multiple assemblies (compilations), an OPTION LINK statement must precede
the first EXEC statement for an assembly or compilation. This is true also when
Linkage Editor control statements like INCLUDE or PHASE are used. If no LINK
option is set, the GO parameter will be in effect only for the EXEC statement it
appears on, and the ACTION default will be set to NOMAP (Linkage Editor control
statements are described below, in "Preparing Input for the Linkage Editor", later in
this section).

When you make use of the GO parameter, your executable program has to run in
virtual mode, and the partition GETVIS area available to this program will be of the
IBM set default size unless you have changed that value using the SIZE command.

If errors occur in one job step causing an abnormal termination, the remaining job
steps are ignored. Certain Linkage Editor errors do not cause job step termination.

188 IBM VSE/ESA Guide to System Functions

 Linking Programs

If you do not want to execute the program when these errors occur, you may
specify ACTION CANCEL after the // OPTION LINK.

Processing Requirements for the Linkage Editor
 The subsequent paragraphs discuss processing requirements as follows:

� Symbolic units required

� Sublibrary definitions required

Symbolic Units Required
The Linkage Editor requires the following symbolic units:

SYSIPT Object module input (see Note)

SYSLST Programmer messages and listings (if SYSLST is not assigned, no map
is printed and programmer messages appear on SYSLOG)

SYSLOG Operator messages

SYSRDR Control statement input (see Note)

SYSLNK Input to the Linkage Editor; must not be assigned to a tape unit

SYS001 Work file. Used only if a large number of RLD items (approximately 400)
is to be processed.

Note: Both SYSRDR and SYSIPT may contain input for the Linkage Editor. This
input is written to SYSLNK by job control.

 Sublibrary Definitions
With the LIBDEF job control statement you define the sublibrary (or chain of
sublibraries) to be accessed by the Linkage Editor. The Linkage Editor has to
access a sublibrary

� To retrieve object modules whenever an INCLUDE statement or the AUTOLINK
function (this function is explained under “Using the AUTOLINK Function” on
page 194) requires it, and

� To store and catalog a phase that has been link-edited.

When you start your job with an assemble or compile step you may have to specify
for the language translator a sublibrary (or chain of sublibraries) to allow the
retrieval of source books to be included in the object module.

For a detailed description of how to set up LIBDEF specifications refer to
Chapter 4, “Using VSE Libraries” on page 97.

Preparing Input for the Linkage Editor
 A Linkage Editor job consists of job control statements and Linkage Editor input.

The Linkage Editor control statements direct the execution of the Linkage Editor.
The statements are: ACTION, ENTRY, INCLUDE, and PHASE. The following
sections describe how to prepare these control statements in context with a
discussion of Linkage Editor input.

 Chapter 5. Linking Programs 189

 Linking Programs

Naming a Phase
Each phase the Linkage Editor is to produce has to have a name, which you
specify in the PHASE statement. When a phase is cataloged in a sublibrary, the
phase name identifies that phase for subsequent retrieval. In other words, this
name must be used as the operand in the EXEC job control statement or in a
FETCH or a LOAD macroinstruction.

When you catalog a phase with the same name as a phase already residing in the
particular sublibrary, the earlier entry with the same phase name is deleted.

For job control, all phases whose names start with the same first four characters
are classified as a multiphase program. When a phase of a multiphase program is
fetched, the available address space must be large enough to contain the largest of
these phases even if that phase is not part of the program which is being executed.
To bypass this mechanism, specify SIZE=phasename in the EXEC statement. This
directs the job control program to acquire only as much space as the particular
phase needs.

In choosing a name for any multiphase program, make sure that the first four
characters are the same for all phases of that program but different from those of
other programs. Such names simplify the deleting, displaying, punching, and
copying of the entire program. Figure 61 on page 191 summarizes this
recommendation.

Phase names are to be formed only from characters 0-9, A-Z, #, $, and @.
Otherwise, the phase statement is invalid. The names "S", "ALL", and "ROOT" are
invalid phase names. For phases which are to be cataloged, keep to the librarian
program's naming conventions.

190 IBM VSE/ESA Guide to System Functions

 Linking Programs

Figure 61. Naming Multiphase Programs

Defining a Load Address for a Phase
For link-editing, you specify in the PHASE statement where your program is to be
loaded for execution. You have several choices.

A phase can be link-edited to be loaded into and executed from:

� A partition's address area

� The shared virtual area (SVA)

� An absolute address.

A phase can be link edited as a relocatable phase, a self-relocating phase, or a
non-relocatable phase.

 Chapter 5. Linking Programs 191

 Linking Programs

The load address you specify in the PHASE statement determines the relocatability
status of the link-edited phase:

� For a phase to be relocatable, that is, executable in any partition, specify a
symbolic address with or without a displacement.

� For a phase which you wrote to be self-relocating, specify +0.

� For a phase to be non-relocatable, specify an absolute address.

Full details on possible load address (also called origin address) specifications are
given in the manual VSE/ESA System Control Statements under “PHASE”.

Link-Editing for Execution in Any Partition
If the Linkage Editor determines that a phase is to be relocatable, it flags the
directory entry for that phase and inserts the relocation information behind the text
of the phase in the sublibrary.

When a relocatable phase is link edited, it is assigned a load address relative to the
beginning of the partition's address area in which the Linkage Editor was executed.
When executing the phase from the same partition, relocation is not required. (This
assumes that storage allocations were not changed between link-editing and
executing the phase.)

Executing the phase from a different partition requires relocation by the operating
system.

Link-Editing for Inclusion in the SVA
If a relocatable phase is also re-enterable, it can be included in the SVA. The
Linkage Editor cannot check whether a phase is re-enterable; however, a protection
check can occur when executing a phase from the SVA that modifies itself and
therefore is not re-enterable.

Phases resident in the SVA can be shared concurrently by more than one partition.
It is advantageous to include frequently-used phases in the SVA because these are
then resident when requested for execution (they are not reloaded from a
sublibrary).

To indicate that a phase should reside in the SVA, you must specify the SVA
operand in the PHASE statement. You can also use the PHASE statement to PFIX
a phase in the SVA to prevent paging. Refer to the manual VSE/ESA System
Control Statements under “PHASE”. for a detailed description of the PHASE
statement.

Immediately after a phase is cataloged as SVA eligible into the system sublibrary
IJSYSRS.SYSLIB, it is loaded into the SVA if this phase is either already in the
SVA or (via the SET SDL command) has been requested to be loaded into the
SVA. This is described in more detail under "User Options for the SVA" in
Chapter 2, “Starting the System” on page 17.

192 IBM VSE/ESA Guide to System Functions

 Linking Programs

Link-Editing for Execution at an Absolute Address
If you specify an absolute address in the PHASE statement, your program can be
loaded only at this address at the time of program execution. The address you
specify and the phase's end address must be within the boundaries of the area
allocated to the partition where you request that phase to be executed.

If you wish to force a phase to be executed in real mode, you may link edit that
phase with the absolute address of a given partition's real address space.

Link-Editing a Self-Relocating Phase
You should identify a self-relocating phase by a PHASE statement with an origin
point of +0:

PHASE PROGA,+0

The Linkage Editor assumes that the program is loaded at location zero, and
computes all addresses accordingly. Job control recognizes such a phase and
adjusts the origin address. It then gives control to the updated entry address of that
phase.

Linkage Editor Input - Source and Sequence
The Linkage Editor can only read input from SYSLNK or from sublibraries. Job
control, therefore, has to take care that all linkage editor input, available on
SYSRDR as part of the job and on SYSIPT, is transferred to SYSLNK. All Linkage
Editor control statements found on SYSRDR are transferred to SYSLNK. An
INCLUDE statement without parameters is interpreted by job control to switch from
SYSRDR to SYSIPT. Data records are read from SYSIPT without checking or
interpretation and transferred to SYSLNK until end-of-data (/*) is reached. Then job
control resumes reading from SYSRDR. The data from SYSIPT can be any linkage
editor input, that is, control statements or object modules or both in any sequence.

When job control finds a // EXEC LNKEDT statement, the Linkage Editor is loaded
and gets control. It starts reading and interpreting records from SYSLNK. INCLUDE
statements with a module name interrupt processing from SYSLNK. The Linkage
Editor then searches for the specified member of type OBJ, and if found, continues
processing by reading records from this member until a record type of an object
END statement is found as last member record. The member can contain an object
module (single or multiple) or further linkage editor control statements or both. Up
to five levels of INCLUDE "nesting" are possible. After detecting the END statement
as last member record, processing is resumed at the previous member level (or at
SYSLNK). The finding of an ENTRY statement at any level causes the Linkage
Editor to complete processing.

The sequential mode of processing is also changed in case of several "INCLUDE
,(namelist)" statements preceding the object module. Each statement is processed
completely before the next one is handled. To do that, all control statements
between the INCLUDE just being processed and the beginning of the object
module are skipped and the selection of the control sections for the phase is done.
Then the Linkage Editor returns to the first statement skipped to handle it in the
same way. If all INCLUDE statements have been processed, the Linkage Editor
continues processing after the object module END statement.

 Chapter 5. Linking Programs 193

 Linking Programs

Linkage Editor Storage Requirements
The storage requirements for a link edit run depend on the number of PHASE and
INCLUDE statements and the number of unique ESD items processed during a link
edit run.

A unique ESD item is an occurrence in the control dictionary. All symbols that
appear in the MAP are unique occurrences. A symbol that occurs several times in
the input stream is normally incorporated into a unique ESD item. However, if the
same symbol occurs in different phases (for example, control sections), each
resolved occurrence of the symbol within a different phase is a unique ESD item.

The following table shows approximate values for phases and unique ESD items
that can be handled by the Linkage Editor running in a given partition size.

With partition sizes below 512KB the I/O buffer size is reduced which increases the
number of I/O operations which in turn decreases performance. The maximum
number of unique ESD items that the Linkage Editor can handle is approximately
32000.

Figure 62. Partition Size and Related Number of Phases and ESD Items

Partition Size 128KB 256KB 512KB 1MB 2MB

Phases 5 10 20 50 50

Unique ESD Items and
Includes

200 1400 3900 12800 32000

Using the AUTOLINK Function
For each phase the automatic library look-up function (referred to as AUTOLINK)
collects any unresolved external references and attempts to resolve them. An
external reference is an ER item in the control dictionary that has not been
matched with an entry point. AUTOLINK searches the current phase search chain
until a cataloged object module with the same name as the external reference is
found. When found, the module is included in the phase (autolinked). This retrieved
module must have an entry point matching the external reference in order to
resolve its address.

The following examples show how the AUTOLINK feature works.

Assume that a sublibrary contains the following:

Module Name Entry Names External References
A A, B, C

 D A
 E B
 F A, C

Following are some examples:

If you specify INCLUDE D in your Linkage Editor input stream A is autolinked
(included with module D) because the external reference A is also a module name
in the sublibrary accessed.

194 IBM VSE/ESA Guide to System Functions

 Linking Programs

If you specify INCLUDE E, module A is not autolinked because the external
reference B does not relate to a module name. Additionally, you must also specify
INCLUDE A, so that the external reference B can be resolved. No autolink is
required.

If you specify INCLUDE D and INCLUDE E, then module A is autolinked by module
D, and the external reference B in module E can then be resolved.

If you specify INCLUDE F, then module A is autolinked as a result of the reference
to A, and the reference to C is also resolved.

Suppressing the AUTOLINK Feature
You can suppress the AUTOLINK feature as follows:

� By specifying NOAUTO in a PHASE statement, AUTOLINK is canceled for that
phase only.

� By specifying NOAUTO in the ACTION statement, AUTOLINK is canceled for
the remaining execution of this Linkage Editor step, starting with the current
phase.

� By writing a weak external reference (WXTRN), you can cancel AUTOLINK for
one symbol.

You can do this in assembler language by specifying for example:

 DC A(LABEL)
 WXTRN LABEL

 or

 DC V(LABEL)
 WXTRN LABEL

For more information, refer to the assembler language publications.

NOAUTO can be used to force an object module into a specific phase within an
overlay structure. For example, the four phases of the program shown below have
a V-type address constant called PETE, but in the overlay structure you want the
coding for PETE included only in the third phase:

 PHASE PROGA,\,NOAUTO
 PHASE PROGB,\,NOAUTO
 PHASE PROGC,\
 PHASE PROGD,\,NOAUTO

causes PETE to be included in PROGC only.

Specifying Linkage Editor Helps
You can specify that the Linkage Editor helps you avoid certain problems in your
programs or isolate problems if they occur. The actions discussed below are MAP
and CANCEL, which may be specified as operands of the ACTION statement.

 Chapter 5. Linking Programs 195

 Linking Programs

Obtaining a Storage Map
You can obtain a Linkage Editor storage map and a listing of Linkage Editor error
diagnostics, which assist you in determining the reasons for particular errors in your
program. If SYSLST is assigned, ACTION MAP is the default. You can specify
ACTION NOMAP if you are not interested in this service of the Linkage Editor.

Refer to the manual VSE/ESA Diagnosis Tools under “ACTION: Print Linkage
Editor Map” for a description of the Linkage Editor map.

Terminating an Erroneous Job
The Linkage Editor may encounter errors that cause the link job to be terminated
with return code 16. Other errors may occur that allow processing to continue,
unless you specify CANCEL in an ACTION statement. In this case, the linkage
editor job is canceled.

Designing an Overlay Program
The nature of virtual storage normally makes it unnecessary to write programs in an
overlay structure, because partitions can be allocated enough virtual storage to
accommodate very large programs. Designers of complex application programs
might want to use the overlay programming technique nevertheless.

Note: If you plan to write overlay programs, consider first the use of 31-bit
addressing and related macros such as CDLOAD to avoid overlay
programs altogether. Refer to the manuals VSE/ESA Extended
Addressability under “Planning for 31-Bit Programs”, and VSE/ESA System
Macro Reference under “CDLOAD Macro” for details about this support.

Overlay programs consist of control sections organized in an overlay tree structure.
An example of an overlay tree structure is shown in Figure 63 on page 197. This
structure does not imply the order of execution, although the root phase is normally
the first to receive control.

The manner in which control should be passed between control sections is
discussed later under “Using FETCH and LOAD Macros.”

Relating Control Sections to Phases
After organizing the control sections of your program into an overlay tree structure,
you must prepare a corresponding set of Linkage Editor control statements. Next,
link-edit your complete overlay program in a single job step, and conversely, do not
include in this job step any phases that are not related to the overlay. Otherwise,
the Linkage Editor may be unable to resolve external references correctly.

Figure 64 on page 198 is an example of the job stream that ensures the overlay
tree structure shown in Figure 63 on page 197.

196 IBM VSE/ESA Guide to System Functions

 Linking Programs

Root
Phase 1
(6000)

Phase 2
(5000)

Phase 3
(5000)

Phase 5
(7000)

Phase 4
(3000)

Phase 6
(3000)

Phase 8
(3000)

Phase 7
(6000)

Phase 9
(8000)

A

B

C

D

E

F

G

H

I

J

K

L
M

N

Figure 63. Overlay Tree Structure

The letters A through N represent control sections, which are organized to form
nine phases in one program. The root phase resides in storage during the entire
execution of the program. The remaining phases can overlay each other during
execution.

You must guarantee a partition size that is equal to the longest combination of
phases that can possibly reside in storage together, namely, phases 1, 2, 4, and 5,
which total 42,000 bytes. If the program had not been organized in an overlay
structure, it would have required an address space of 92,000 bytes.

 Chapter 5. Linking Programs 197

 Linking Programs

// JOB OVERLAY
// OPTION CATAL

 INCLUDE
PHASE PHASE1,ROOT PHASE1 stays in storage during
INCLUDE ,(CSECTA,CSECTB) execution of the entire program.
PHASE PHASE2,\ PHASE2 is to be loaded
INCLUDE ,(CSECTC,CSECTD) immediately behind PHASE1.
PHASE PHASE3,\ Since PHASE3 needs PHASE2, PHASE3
INCLUDE ,(CSECTE) is not allowed to overlay PHASE2.
PHASE PHASE4,PHASE3 PHASE4 will occupy the same
INCLUDE ,(CSECTF,CSECTG) storage locations as PHASE3.
PHASE PHASE5,\ PHASE5 will be loaded
INCLUDE ,(CSECTH) immediately behind PHASE4.
PHASE PHASE6,PHASE5 PHASE6 will be loaded at the
INCLUDE ,(CSECTI) same address as PHASE5.
PHASE PHASE7,PHASE2 PHASE7 will be loaded at the
INCLUDE ,(CSECTJ,CSECTK) end of the root phase.
PHASE PHASE8,\ PHASE8 will be loaded at the
INCLUDE ,(CSECTL) end of PHASE7.
PHASE PHASE9,PHASE8 PHASE9 will overlay

 INCLUDE ,(CSECTM,CSECTN) PHASE8.
(Object modules containig CSECTs A through N)

 /\
// EXEC LNKEDT

 /&

Figure 64. Link-Editing an Overlay Program

Using LOAD and FETCH Macros
During execution, an overlay program uses LOAD or FETCH macros to request
that a subsequent phase be brought into the partition.

Use a LOAD macro in a phase that is to remain in control after the requested
phase is brought into the partition.

Use a FETCH macro if you want the requested phase to gain control immediately
after it is brought into the partition. If a phase loaded by the FETCH macro is
relocatable, it will be relocated if necessary. You cannot issue a FETCH macro for
a self-relocating phase.

Refer to the manual VSE/ESA System Macro Reference under “FETCH Macro” and
“LOAD Macro” for a detailed description of these macros.

 Pseudo-Register Support

 Overview
In PL/I, programmers can use pseudo-registers to define storage that will not be
reserved in the load module but can be allocated dynamically during execution. The
external dummy sections generated by the High Level Assembler correspond to
the pseudo-registers of PL/I.

198 IBM VSE/ESA Guide to System Functions

 Linking Programs

 Implementation Details
The High Level Assembler implementation of pseudo-registers provides two
instructions (DXD and CXD) and a special address constant (Q-type). An external
dummy section is defined, if a

DXD instruction (specifying length), or a
DSECT instruction (specifying length and structure of the section)

is coded together with a Q-type address constant referring to the label of the DXD
or DSECT instruction.

External dummy sections (pseudo-registers) defined in this way, are accumulated
by the Linkage Editor to a single, consecutive storage block. The Linkage Editor
provides the total cumulative length of this block at the fullword position of the CXD
instruction. The displacement of each single, external dummy section within the
storage block is placed at the locations of the related Q-type constants. Refer also
to the corresponding assembler and compiler documentation.

Note that external dummy sections are accumulated for the complete Linkage
Editor job. This is also the case if more than phase is generated.

The Linkage Editor receives the necessary information in ESD entries provided for
DXD and DSECT statements and in RLD entries provided for CXD statements and
Q-type address constants:

� The ESD entries are of type X'06' and contain name, length, and an alignment
requirement of the external dummy section.

� The RLD entries for Q-type constants have type B'10', the RLD entries for CXD
fields have type B'11' and a zero R-pointer.

If two or more external dummy sections for different source modules have the same
name, the linkage editor uses the most restrictive alignment and the largest section
to compute the total length. A doubleword alignment is more "restrictive" than
fullword alignment; a fullword alignment is more "restrictive" than halfword
alignment; and so on.

Further Characteristics:

� External dummy sections can coexist with other ESD types of the same name
(such as control sections, entry definitions, or external references).

� Multiple CXD instructions are allowed. The pseudo-register cumulative length
value is stored in all CXD fields.

� If a displacement is too large to fit into the Q-constant (which can be defined as
1 to 4 byte field) or the cumulative length is beyond 31-bit addressability, an
error message is issued.

Notes:

1. The design of this VSE/ESA Linkage Editor function (including the layout of
ESD and RLD entries) follows closely the MVS Linkage Editor.

2. The interface between the object code and the VSE/ESA Linkage Editor (ESD
or RLD type) is identical to that between the High Level Assembler and the
MVS Linkage Editor.

 Chapter 5. Linking Programs 199

 Linking Programs

 Coding Example
The following example is for an external dummy section in High Level Assembler
code.

CSECT1 START
 .
 .

GETVIS ,LENGTH=CUML Start address of the pool
of external dummy sections
is returned in register 1

 L 8,DISP1
 L 9,DISP2
 .
 .

L 2,OFFSET1(8,1) Access to offset within
1. external dummy section

ST 2,OFFSET2(9,1) Access to offset within
2. external dummy section

 .
 .
EXTDS1 DXD 19C 1. ext. dummy sect. (length 19 bytes)
EXTDS2 DXD 2ðF 2. ext. dummy sect. (length 2ð words)
DISP1 DC Q(EXTDS1) LE loads X'ð' into DISP1
DISP2 DC Q(EXTDS2) LE loads X'14' into DISP2 (FW alignment)
CUML CXD LE loads X'64' into CUML (cumulative length)
 END

Support of Named Common Control Sections
Common control sections (common areas) are control sections used to reserve
"common storage" for shared use between phases. This common storage is
reserved in the partition in front of the phase with the lowest start address of the
linked phases; usually at the beginning of the partition. Common sections are
defined in the source module by the assembler instruction COM (or directly by the
compilers). If the COM instruction has a label, the common area is referred to as
named, otherwise it is blank or unnamed. In addition to blank common areas,
named common areas are supported as well.

A control section which has the same name as a common area must have at least
the same length.

The VSE/ESA Linkage Editor accepts ESD records as produced by the High Level
Assembler for common sections.

How External References are Resolved
The Linkage Editor allows the inclusion of the same control section (CSECT) within
each of several phases of a multiphase link edit. If a CSECT appears in a ROOT
phase, it does not appear in any other phase (this does not apply to CSECTs that
begin with the letters IBM). A duplicate CSECT within the same phase will be
ignored.

200 IBM VSE/ESA Guide to System Functions

 Linking Programs

The following examples show how external references are resolved, depending on
whether or not a ROOT phase exists. The first example shows how external
references are resolved without a ROOT phase:

The second example shows the resolution of external references with a ROOT
phase:

Privileged external references (names beginning with the letters IJ or IBM) are
always resolved within the current phase or the ROOT phase. If this is not possible,
the resolution will be attempted at the end of the phase via the AUTOLINK function
(if NOAUTO is specified, the IJ or IBM prefix is not privileged). The other previously
defined phases are not examined for possible resolution. If an external reference
does not match the name of a module in the sublibraries to be searched, it will be
an unresolved external reference.

 Chapter 5. Linking Programs 201

 Linking Programs

The following example shows the resolution of privileged external references:

Examples of Linkage Editor Applications
The Linkage Editor examples on the following pages illustrate the use of and
relation between Linkage Editor and job control statements.

Catalog a Phase into a Sublibrary
// JOB CATALPHA

(1) // LIBDEF PHASE,CATALOG=YOURLIB.YSUB1,TEMP
(1) // LIBDEF OBJ,SEARCH=(YOURLIB.YSUB1,MYLIB.MSUB1),TEMP
(2) // ASSGN SYSLNK,19ð
(3) // OPTION CATAL
(4) PHASE PROGB,\,SVA
(5) INCLUDE
 Object deck
 /\

 INCLUDE SUBRX
 INCLUDE SUBRY
 INCLUDE
 Object deck
 /\
(6) // EXEC LNKEDT
 /&

This example illustrates the cataloging of a single phase composed of multiple
object modules. These modules are located in the input stream and in a sublibrary.

 (1)
These are temporary library definitions that override existing permanent definitions.
A LIBDEF PHASE,CATALOG=... statement (temporary or permanent) is always
required since no default sublibrary exists for cataloging phases. The
LIBDEF OBJ,SEARCH=... statement defines the sublibraries to be searched for
object modules.

202 IBM VSE/ESA Guide to System Functions

 Linking Programs

Label information for the libraries containing the required sublibraries must have
been stored in the label information area or DLBL and EXTENT statements and
librarian DEFINE commands must precede the LIBDEF statements.

 (2)
The statement is required, unless SYSLNK is permanently assigned. If the
statement is included, it must precede the OPTION statement (3).

 (3)
The OPTION CATAL statement indicates that any phase generated in the
subsequent link-edit run is to be cataloged permanently.

 (4)
Only one PHASE is produced. It is cataloged into the sublibrary defined and can be
retrieved by the name PROGB. The specified origin *, indicates that this phase
begins at the starting address of the partition plus the length of the partition save
area, and the COMMON pool (if any). The SVA operand indicates that the phase is
SVA-eligible.

If the phase is cataloged into the system sublibrary, the following applies: If the
phase PROGB is already loaded in the SVA or has been requested (via the SET
SDL command) to be loaded into the SVA, PROGB is loaded into the shared virtual
area immediately after it is cataloged into the system sublibrary. If it is a private
sublibrary, as in this example, a phase is not automatically loaded into the SVA but
the SET SDL command must be used.

Note: The COMMON pool is used, for example, by FORTRAN programs to store
data shared by multiple programs.

 (5)
Four object modules make up this phase. The first and last are not cataloged. Job
control reads them from SYSIPT and writes them onto SYSLNK. Each of these
object modules must be followed by /*. SUBRX and SUBRY are cataloged in the
sublibraries defined in the LIBDEF OBJ,SEARCH statement.

 (6)
The EXEC LNKEDT statement causes the Linkage Editor program to be loaded.
SYSLNK, the input to the Linkage Editor, now contains:

 PHASE PROGB,\,SVA
First uncataloged deck

 INCLUDE SUBRX
 INCLUDE SUBRY
Second uncataloged deck

 ENTRY

When link-editing is completed, the Linkage Editor catalogs the phase.

The example can be modified to illustrate a link-and-execute operation as shown in
the following paragraphs.

 Chapter 5. Linking Programs 203

 Linking Programs

Link-Edit and Execute Example
// JOB LINKEXEC

(1) // OPTION LINK
(2) PHASE PROGA,\
(3) INCLUDE
 object deck
 /\
(4) // EXEC LNKEDT
(5) Any job control statement required for execution

such as ASSGN or label statements
(6) // EXEC

input data as required
 /\
 /&

This example illustrates the link-editing and execution of a single phase that is
constructed from a single object module contained in punched cards. No
assignments are necessary because the system units and sublibraries required for
link-editing are assumed to be permanently assigned.

 (1)
The statement indicates that a link-edit operation without cataloging is to be
performed. Using the data on SYSLNK as input, the Linkage Editor generates
executable code and stores this code temporarily in the virtual I/O area for
immediate execution.

 (2)
The phase that is built by the Linkage Editor starts at the beginning of the partition
plus the length of the save area plus the length of the area assigned to the
COMMON pool (if any).

 (3)
Since the INCLUDE statement has no operands, job control reads the records from
SYSIPT and writes them on SYSLNK until SYSIPT has an end-of-data (/*) record.
The data on SYSIPT is expected to be an object module in card image format.

 (4)
The statement causes the Linkage Editor program to be loaded.

Using the data on SYSLNK as input, the Linkage Editor generates executable code
and stores this code temporarily in the virtual I/O area for immediate execution. No
ACTION options are specified. Therefore, when resolving external references, if
any, the Linkage Editor uses its AUTOLINK function. Error diagnostics and a
storage map are written on SYSLST.

 (5)
Because the program is not cataloged, it must be executed immediately. Any
pertinent job control statements are entered at this point.

204 IBM VSE/ESA Guide to System Functions

 Linking Programs

 (6)
An EXEC statement with no program name operand indicates that the phase to be
executed was just link-edited. Therefore, no search of a sublibrary for a phase is
required. The program is brought from the VIO area into partition storage and
control is transferred to it. The example can be modified to illustrate a compile
(assemble)-and-execute operation as shown in the following paragraphs.

Compile and Execute Example
// JOB COMPEXEC

(1) // OPTION LINK
(2) PHASE PROGA,S
(3) // EXEC FCOBOL

COBOL source statements
 /\
(4) INCLUDE SUBRX

(4) INCLUDE
 object module
 /\
(5) ENTRY BEGIN1

// EXEC LNKEDT
Any job control statements required for PROGA

 execution
 // EXEC

Any input data required for PROGA execution
 /\
 /&

This example illustrates the compiling (assembling), link-editing, and execution of a
single phase constructed of multiple object modules. All three possible sources of
object module input to the Linkage Editor are used: SYSIPT, a sublibrary, and the
output from a language translator. It is assumed that only sequential disk files,
diskette files or unlabeled tape files are processed. All necessary assignments are
considered as permanent.

 (1)
The statement indicates that a link-edit operation without cataloging is to be
performed.

 (2)
A specification of S as the origin causes the generated phase to start at the first
doubleword in the partition following the partition save area, and the area assigned
to the COMMON pool (if any). This gives the same effect as the specification of an
asterisk (*).

 (3)
The appropriate language translator is called (in this case, DOS/VS COBOL). The
normal rules for compiling are as follows; the source deck must be on the unit
assigned to SYSIPT and the /* defines the end of the source data. The output of
the language translator is written on SYSLNK.

Note: Some compilers generate under certain conditions additional dummy
PHASE cards. If so, the output cannot be processed with OPTION LINK
(which allows only the processing of single phases).

 Chapter 5. Linking Programs 205

 Linking Programs

 (4)
The statement is written to SYSLNK.

INCLUDE without an operand causes job control to read from SYSIPT up to the
next /* statement and to write the records to SYSLNK.

 (5)
The ENTRY statement is written on SYSLNK as the last linkage editor control
statement. The symbol BEGIN1 must be either the name of a CSECT or a label
definition that occurs in an ENTRY source statement defined in the first and only
phase. The address of BEGIN1 becomes the transfer address for the program. The
ENTRY statement is used to provide a specific entry point rather than to use the
point specified in the program.

The remaining statements follow the same pattern as discussed in the Link-Edit
and Execute example.

If certain types of errors are detected during compilation of a source program, the
LINK option is suppressed. Under these circumstances the EXEC LNKEDT and
EXEC statements are ignored and the message 'STATEMENT OUT OF
SEQUENCE' results. This should be kept in mind if a series of programs is to be
compiled and cataloged as a single job. Failure of one job step would cause failure
of all succeeding steps.

This problem can be handled, however, by using conditional job control. The
processing of such a job stream can then be controlled by making the processing
of subsequent job steps dependent on the return code passed by the Linkage
Editor in a previous job step. For details refer to the section “Using Conditional Job
Control” in Chapter 3, “Controlling Jobs” on page 39.

206 IBM VSE/ESA Guide to System Functions

 Using VSE Facilities and Options

Chapter 6. Using VSE Facilities and Options

This chapter discusses ways and means for monitoring certain activities of the
system. This involves the coding of program exit routines and of user programs to
be used as IPL and job control exit routines and the coding of a job accounting
interface routine. In addition, this chapter discusses the checkpointing facility,
DASD switching and designing programs for virtual mode execution.

User-Written Exit Routines

Program Exit Routines
If required, the supervisor can permit user routines to gain control when any of the
following types of events occurs:

� Interval Timer Interrupt (IT)

� Program Check Interrupt (PC)

� Abnormal Termination (AB)

� Operator Communication Interrupt (OC)

� Page Fault Handling Overlap

Both the supervisor and the problem program that contains the user routine must
have the proper code to establish an interface.

A problem program that wants to utilize the options must contain code to set up the
interface. For the events IT, PC, AB, and OC the STXIT macro is to be used. For
page fault handling overlap, the SETPFA macro is available (further discussed
under “Page Fault Handling Overlap Exit” on page 209).

Figure 65 is a summary of the supervisor determined conditions for which an exit
routine may be coded and the operand to be coded in the STXIT macro. The
STXIT macro and its operands are discussed in detail in the manual VSE/ESA
System Macro Reference under “STXIT Macro”.

Operand of the STXIT Macro Condition

AB Abnormal termination of the problem program.

IT Interval timer external interrupt.

OC Operator communications interrupt.

PC Program check interrupt.

Figure 65. Summary of Program Exit Conditions (STXIT Macro)

Short descriptions of the support for each of the types of program exit routines
follow, indicating the associated problem program macros. For information on how
multitasking affects this support and what happens if multiple events coincide, refer
to VSE/ESA System Macro User's Guide under “Interval-Timer User Exit”. Some
high-level languages offer similar facilities, for details of which see the appropriate
programmer's guide.

 Copyright IBM Corp. 1984, 1999 207

 Using VSE Facilities and Options

Interval Timer Exit
 Suppose you want to cancel a job at a certain time if it has not already completed.
Code the STXIT to set up the interface of your exit routine with the supervisor; use
the SETIME macro to set a time interval. When that interval elapses, an interval
timer interrupt occurs and control is given to your user routine. The user routine
need not be entered immediately. For instance, if the user routine is in the
background partition, and a foreground partition is active, the user routine will not
be entered until the background partition becomes active.

To find out the time remaining in an interval, a program can issue the TTIMER
macro instruction. The supervisor then loads this value in general register 0. This
macro can also be used to cancel the remaining time in the interval.

Program Check Exit
 Programs can establish linkage from the supervisor to a user program-check exit
routine by coding an STXIT macro. If a program check occurs within the program,
the supervisor gives control to the user routine instead of discontinuing the
program. The user routine can analyze the program check and choose to ignore, to
correct, or to accept it.

If the check is ignored or if the exit routine can correct the error condition, the
routine can request via the EXIT PC macro that processing of the main line
program continues.

If the problem cannot be resolved, the program check is accepted as valid. The
user routine can then terminate further processing of the program by issuing a
CANCEL, DUMP, JDUMP, or EOJ macro.

The ability to include a user routine to process program checks can be especially
advantageous when using LIOCS. In that case, I/O housekeeping such as closing
files and freeing tracks can be performed before termination of the job or task.

Abnormal Termination Exit
 Programs can establish linkage from the supervisor to an abnormal termination exit
routine by issuing an STXIT AB macro.

The macro allows a user routine to get control from the supervisor before an
abnormal end-of-job condition discontinues the processing of the program. The
user routine normally ends with one of the termination macros (CANCEL, DUMP,
JDUMP or EOJ) to terminate the problem program and to return control to the
supervisor, rather than by initiating the continuation of the problem program.

Operator Communications Exit
 Programs can provide a routine for handling external interrupts from the operator.
This support is useful in a number of applications, for example:

� To let the operator indicate that a required action has been taken.

� To allow the operator to communicate with CICS to start and stop activities on
certain communication lines or terminals, or to invoke diagnostic procedures.

The external interrupt that links to an OC user exit routine is caused by entering the
MSG command. Refer to VSE/ESA System Control Statements under “MSG” for
further details.

208 IBM VSE/ESA Guide to System Functions

 Using VSE Facilities and Options

Page Fault Handling Overlap Exit
A user routine can continue processing during the time a page fault is being
handled by the system, provided this page fault occurs in the same task and not in
a supervisor routine invoked by this task. This support is of interest only for
programs executed in virtual mode and making use of user-developed subtasking
rather than IBM-supplied multitasking.

Such programs may issue the SETPFA macro instruction to establish linkage from
the page management routines in the supervisor to a user routine, called the page
fault appendage routine. Linkage can be established for only one task per partition.
The usage of the SETPFA macro is described in the manual VSE/ESA System
Macro Reference under “SETPFA Macro”.

Programming Interface Information

Writing an IPL Exit Routine
The IPL Exit allows you to do some processing at the end of IPL and prior to
execution of the job control program. You may want to check the IPL options
included, for example, whether the support for job accounting or access control is
activated.

Note: IPL exit routines are restricted to a 24-bit environment.

Before you start coding your exit routine, take account of any system requirements
that should be met at the time the routine is to be executed. The exit routine and
any routines that are called by your routine must be present in the system
sublibrary IJSYSRS.SYSLIB.

Observe the following conventions for the exit routine:

� Register 15 contains the entry point of the routine.

� Register 14 contains the return address to job control.

� The format of the PHASE statement must be:

 PHASE $SYSOPEN,\

After IPL, the job control program executes the exit routine as an overlay phase; an
area of 4K has been reserved for the exit routine. While the routine is being
executed, the job control program is unable to read any job control statements.

In your exit routine, you may issue SVCs and perform I/O operations to SYSLOG
and/or SYSRES. To do so, you may only use the EXCP macro. Any use of LIOCS
or of a DTFPH would obstruct proper execution of the job control program.

Phase $SYSOPEN will be executed with a storage protect key of zero. If the phase
is abnormally terminated, the job control program will be loaded for execution.

Figure 66 on page 210 illustrates a user-written routine that is executed once each
time the IPL procedure is performed.

 Chapter 6. Using VSE Facilities and Options 209

 Using VSE Facilities and Options

\ THIS PROGRAM CHECKS WHETHER THE INSTALLATION INCLUDES
\ JOB ACCOUNTING SUPPORT. IPL WITHOUT ACTIVATING JOB
\ ACCOUNTING IS CONSIDERED AS NOT ALLOWED.
\ A MESSAGE INFORMS THE OPERATOR WHY HE/SHE HAS TO
\ REPEAT IPL. THEN A HARD WAIT IS FORCED.

 \
 START ð
 USING \,R15
BEGIN ST R14,RETURN SAVE RETURN ADDRESS

 COMRG REG=R2
TM 56(R2),X'8ð' JOB ACCOUNTING SUPPORTED?
BZR R14 YES, RETURN TO JOB CONTROL
LA R1,LOGCCB NO, WRITE MESSAGE TO

 EXCP (1) OPERATOR
 WAIT (1)

L R11,HWCODE LOAD HARD WAIT CODE
ST R11,ð STORE IT IN LOW CORE
OI SVCNPSW+1,X'ð2' SET ON WAIT BIT
SVC 7 FORCE HARD WAIT

SVCNPSW EQU 96 LOCATION OF SVC NEW PSW
 LOGCCB CCB SYSLOG,LOGCCW,X'ð4ðð' CCB WITH POST AT DEVICE END
 LOGCCW CCW X'ð9',LOGMSG,X'2ð',L'LOGMSG
 LOGMSG DC C'JOB ACCOUNTING SUPPORT NOT ACTIVATED, RE-IPL'
 RETURN DC F'ð'
 HWCODE DC C'NOJA'
Rð EQU ð
R1 EQU 1
R2 EQU 2

 R11 EQU 11
 R12 EQU 12
 R13 EQU 13
 R14 EQU 14
 R15 EQU 15
 END BEGIN

Figure 66. IPL Exit Routine Example

End of Programming Interface Information

Programming Interface Information

Writing a Job Control Exit Routine
After a job control statement (or command) has been read, and before any
symbolic parameters have been substituted, control can be passed to one or more
user exit routines. Such a routine can examine and alter the statement (or
command) before symbolic parameters are substituted, and before it is processed
by job control.

As shipped, VSE/ESA contains dummy phase $JOBEXIT in the system library
which is automatically loaded into the SVA at IPL. If you do not modify $JOBEXIT,
it has no effect on your system. If you replace it by your own user-exit routine, it is

210 IBM VSE/ESA Guide to System Functions

 Using VSE Facilities and Options

activated for each control statement (command) after that statement (command)
has been read by job control.

In your routine you are free to modify the operands of the job control statement and
to add comments. You must not, however, modify the operation field of the
statement. For example, // EXEC IBM can be modified to // EXEC USER; the
operation field (EXEC) cannot be modified. In your exit routine neither perform any
I/O operations nor issue any SVCs nor request the system to cancel the job step.

Link-edit your routine to the system library using a PHASE and a MODE control
statement as follows:

 PHASE $JOBEXIT,S,NOAUTO,SVA
 MODE AMODE(24),RMODE(24)

Your routine must be coded re-enterable; it must be SVA eligible, and it must
reside in the SVA. The PHASE statement must include the SVA parameter. This
ensures that when the phase is cataloged it will also be loaded into the SVA
replacing the dummy phase provided by IBM.

Note: JCL user exit routines must be loaded into the SVA (24-Bit).

Phase $JOBEXIT is executed with a storage protection key of zero. The code is
shared between partitions.

When your routine receives control, registers contain control information as shown
on the following page.

 Chapter 6. Using VSE Facilities and Options 211

 Using VSE Facilities and Options

Register Number Contents of Register

 0 System identification characters 'SDOS'.

 1 Address of partition communication region.

 2 Address of system communication region.

 3 Address of current statement's vector table entry.

 4 Address of buffer that contains the currently processed job
control statement.

 5 Number of continuation lines if read from SYSDR, otherwise
0.

 6 Anchor field. At the very first call (after IPL) JCL will load
X'00000000' into register 6 before passing control to the exit
routine. For all subsequent calls register 6 will contain the
value that was returned from the last preceding call. This will
allow an exit routine, for example, to acquire GETVIS storage
and get its address saved from call to call. In case of multiple
job control exit routines, a SET SDL for one single
$JOBEX0n will cause all anchor fields to be re-initialized to
X'00000000'.

13 Skip mode indicator:

R13=X'00000000' Job Control will process the
statement.

R13=X'000000FF' Job control will ignore the
statement (that is, job control
is in skip mode, the
statement does not come
from SYSLOG, and the
statement is not JOB, /&, /+,
or /.).

14 Return address to job control.

15 Entry address of $JOBEXIT.

Figure 67. Register Contents for JCL Exit Routines

Prior to returning control to job control, your routine must store a return code value
into register 15:

a zero value requests job control to continue processing the current
statement.

a value of X'D5D3D6C7' requests job control to ignore the current statement. The
statement will not be logged, neither on SYSLST nor on
SYSLOG.

a value of X'C3D3D6C7' requests job control to ignore the current statement. The
statement will be logged conditionally, that is depending
whether LOG and/or // OPTION LOG are currently in effect
or not.

any other non-zero value requests job control to ignore the current statement. The
statement will be logged unconditionally, both on SYSLST
and on SYSLOG.

212 IBM VSE/ESA Guide to System Functions

 Using VSE Facilities and Options

The vector table whose layout is given below shows which job control statement is
being processed by job control. You must not modify its contents. Use it for
comparison only. Continuation lines are located in storage immediately behind the
statement pointed to by register 4, and are each 80 bytes long.

In the buffer, you may modify any part of the statement, except for the operation
field. After having set the return code, your routine should pass control back to job
control.

Layout of the vector table:

Bytes 0 through 6: Operation field (name of job control statement)

Bytes 7 through 13: Internal control information

Do not attempt to modify the table or modify the operation field in the buffer.

Note: Make sure your exit routine is free of errors that could cause abnormal
termination in a production environment. Figure 68 on page 214 illustrates
a job control exit routine. This example shows no handling for continuation
lines, because the program name, which is being checked for, is to be
expected in the first line.

The Job Control Exit Routine example shown in Figure 68 on page 214 is
available as skeleton JOBEXIT in VSE/ICCF library 59.

 Chapter 6. Using VSE Facilities and Options 213

 Using VSE Facilities and Options

 \ $$ JOB JNM=IESJEXT,CLASS=ð,DISP=D,NTFY=YES
 \ $$ LST CLASS=Q,DISP=H
 // JOB IESJEXT ASSEMBLE
 // LIBDEF \,CATALOG=IJSYSRS.SYSLIB
 // OPTION CATAL
 // EXEC ASMA9ð,SIZE=(ASMA9ð,64K),PARM='EXIT(LIBEXIT(EDECKXIT)),SIZE(MAXC
 -2ððK,ABOVE)'
TITLE 'JCLE $JOBEXIT - DUMMY PHASE - JCL-EXIT TO USER-ROUTINE'

 \\\
 \ USER EXIT FROM JOB-CONTROL AFTER A STATEMENT IS READ \
 \ \
 \ RESIDENCE \
 \ $JOBEXIT PHASE IS LOADED INTO THE SVA DURING IPL. \
 \ IF THIS JOB IS EXECUTED, THE PHASE $JOBEXIT IS \
 \ REPLACED IN THE SVA. TO ACTIVATE THE NEW EXIT \
 \ ROUTINE, A SET SDL COMMAND WITH $JOBEXIT,SVA HAS \
 \ TO BE ISSUED. IF MULTIPLE EXITS ARE USED, ALL EXIT \
 \ ROUTINES HAVE TO BE LOADED AND ACTIVATED. \
 \ \
 \ ACTIVATE/DEACTIVATE STATUS \
 \ THE USER EXIT ROUTINES MAY BE ACTIVATED OR \
 \ DEACTIVATED USING THE JCLEXIT COMMAND ISSUED FROM \
 \ THE BACKGROUND PARTITION. THIS COMMAND ALLOWS ALSO \
 \ TO DISPLAY THE STATUS IF ENTERED WITHOUT OPERAND. \
 \ THE SET SDL COMMAND FOR ANY JOB EXIT ROUTINE WILL \
 \ ALSO ACTIVATE THE ROUTINE. \
 \ \
 \ FUNCTION \
 \ FOR A DETAIL INFORMATION REFER TO THE 'GUIDE TO \
 \ SYSTEM FUNCTIONS' MANUAL. \
 \ \
 \ THE OPERANDS OF THE JCL STATEMENT CAN BE MODIFIED \
 \ IN THE EXIT ROUTINES TO THE USER'S CONVENIENCE. \
 \ SOME COMMENTS CAN BE ADDED IN THE LENGTH OF THE AREA \
 \ 'BUFFER', WHERE THE JCL STATEMENT RESIDES. THIS AREA \
 \ HAS A LENGTH OF 121 BYTES. \
 \ FROM THE START OF THE AREA 'BUFFER' THE LENGTH OF \
 \ 71 BYTES IS PRINTED ONTO SYSLOG AND THE LENGTH OF \
 \ 121 BYTES IS PRINTED ONTO SYSLST. \
 \ EXCEPTION: \
 \ AT EOJ BYTE 11-71 ARE AVAILABLE FOR USER PURPOSE ONLY.\
 \ THE USER CAN ISSUE A RETURN CODE: \
 \ - REG. 15 = ZERO : STATEMENT WILL BE PROCESSED \
 \ - REG. 15 = NON-ZERO: STATEMENT IS TREATED AS COMMENT\
 \ \

Figure 68 (Part 1 of 3). Job Control Exit Routine Example

214 IBM VSE/ESA Guide to System Functions

 Using VSE Facilities and Options

 \ REGISTER USAGE \
 \ \
 \ Rð PRELOADED WITH ID.: 'SDOS' FUTURE USE \
 \ R1 PRELOADED WITH ADDR OF PART. COMREG \
 \ R2 PRELOADED WITH ADDR OF SYSCOM \
 \ R3 PRELOADED WITH ADDR OF JCL VECTOR TABLE \
 \ R4 PRELOADED WITH ADDR OF AREA 'BUFFER', WHERE \
 \ THE JCL STATEMENT RESIDES \
 \ R5 NUMBER OF CONTINUATION LINES WHEN READ \
 \ FROM SYSRDR \
 \ R6 ANCHOR FIELD: ANY VALUE CAN BE PASSED BY \
 \ THE USER EXIT TO JCL. IT WILL BE \
 \ SAVED BY JCL AND BE PASSED TO \
 \ THE USER EXIT ROUTINE AT ITS \
 \ NEXT INVOCATION. ITS INITIAL \
 \ VALUE WILL BE ZERO. \
 \ CARE SHOULD BE TAKEN SINCE \
 \ THE USER EXIT ROUTINE CAN BE \
 \ INVOKED ASYNCHRONOUSLY BY ALL \
 \ PARTITIONS. THEREFORE IT IS \
 \ RECOMMENDED TO MODIFY THE ANCHOR \
 \ ONLY AT THE FIRST INVOCATION OF \
 \ A EXIT ROUTINE AND LEAVE IT \
 \ UNCHANGED AT ALL FURTHER CALLS. \
 \ WHENEVER A 'SET SDL' COMMAND FOR ANY \
 \ JCL EXIT ROUTINE IS ISSUED A COMPLETELY \
 \ NEW JOB EXIT ENVIRONMENT IS BUILT UP AND \
 \ THE ANCHOR FIELDS FOR ALL EXIT ROUTINES \
 \ ARE RESET TO ZERO. \
 \ R14 LINK-RETURN TO JOB-CONTROL ROOT PHASE \
 \ R15 AT ENTRY: BASE-ADDRESS OF THIS PHASE \
 \ AT EXIT: TO BE LOADED WITH RETURN CODE \
 \ \
 \\\
 EJECT

PUNCH ' PHASE $JOBEXIT,S,SVA '
 IJBJEXIT START ð
 \ HERE YOU CAN INSERT YOUR CODE IF YOU HAVE ONLY ONE EXIT ROUTINE
 JOBEXIT XR 15,15 ZERO VALUE MEANS NORMAL PROCESSING

BR 14 RETURN TO CALLER
 \\\
 \ \
 \ INSTALLATION OF MULTIPLE JCL EXIT ROUTINES: \
 \ \
 \ A) CATALOG YOUR JCL EXITS INTO IJSYSRS.SYSLIB AND ADD THEM TO \
 \ THE SVA LOAD LIST $SVAðððð. \
 \ \
 \ B) IPL YOUR SYSTEM TO LOAD THE EXIT ROUTINES INTO THE SVA. \
 \ \
 \ C) RUN THIS JOB. \
 \ \

Figure 68 (Part 2 of 3). Job Control Exit Routine Example

 Chapter 6. Using VSE Facilities and Options 215

 Using VSE Facilities and Options

 \ EXAMPLE OF TWO EXIT ROUTINES: \
 \ \
 \ IF YOU WANT JCL TO INVOKE TWO JCL EXIT ROUTINES \
 \ YOU HAVE TO REMOVE THE PREVIOUS TWO LINES OF CODE AND \
 \ TO MODIFY THE FOLLOWING COMMENT LINES BY \
 \ - REMOVING THE ASTERISK IN COLUMN 1 \
 \ - CHANGING THE LAST DIGIT OF THE USER EXIT ROUTINE \
 \ NAMES. VALID CHARACTERS ARE NUMBERS FROM ð THROUGH 9. \
 \ - CHANGING THE IDENTIFIER OF THE ROUTINES TO A NAME OF YOUR \
 \ CHOICE. \
 \ FOR EVERY ADDITIONAL USER EXIT TWO LINES MUST BE ADDED: \
 \ - ONE FOR THE USER EXIT ROUTINE NAME - $JOBEXðN \
 \ - ONE FOR THE IDENTIFIER OF THE USER EXIT ROUTINE \
 \ \
 \ DO NOT FORGET TO REMOVE THE ASTERISK BEFORE THE IDENTIFIER \
 \ OF THE USER EXIT LIST AND DON'T CHANGE ANY LENGTH. \
 \ \
 \ DO NOT FORGET TO REMOVE THE ASTERISK BEFORE THE END OF TABLE \
 \ INDICATOR. \
 \ \
 \ \
 \ \
 \ \
 \ \
 \ \
 \ \
 \ \
 \ \
 \ \
 \ \
 \\\
 \ DC CL8'JCLLUSEX' IDENTIFIER OF USER EXIT LIST
 \ DC CL8'$JOBEXðð' USER EXIT ROUTINE NAME
 \ DC CL8'IDENTIFð' IDENTIFIER OF THE ROUTINE
 \ DC CL8'$JOBEXð1' USER EXIT ROUTINE NAME
 \ DC CL8'IDENTIF1' IDENTIFIER OF THE ROUTINE
 \ DC X'FFFFFFFF' END OF TABLE
 END IJBJEXIT
 /\
 // EXEC LNKEDT,PARM='MSHP'
 /\
 /&
 \ $$ EOJ

Figure 68 (Part 3 of 3). Job Control Exit Routine Example

Multiple Job Control Exit Routines
You can also specify a list of up to 10 JCL exit routines in the phase $JOBEXIT.
This means that up to 10 JCL exit routines can be invoked for each JCL statement
(command).

Phase $JOBEXIT is cataloged in the system library IJSYSRS.SYSLIB. JCL checks
the first eight characters of phase $JOBEXIT and interprets them as follows:

216 IBM VSE/ESA Guide to System Functions

 Using VSE Facilities and Options

� If they are equal to JCLLUSEX , JCL assumes that you cataloged a list of JCL
exit routines in phase $JOBEXIT. JCL then checks whether all of these JCL
exit routines are stored in the Shared Virtual Area (SVA). JCL invokes each exit
routine defined provided it has been activated (as described on the following
pages). Refer to Figure 69.

� If the first eight characters are not equal to JCLLUSEX, JCL calls phase
$JOBEXIT as a single exit routine.

Creating a List of JCL Exit Routines
The IBM-provided source program JOBEXIT helps you create a list of JCL exit
routines. Sample JOBEXIT is available as a member in VSE/ICCF library 59 for
modification. You have to edit this sample, compile it, and catalog it into your
system library IJSYSRS.SYSLIB. Figure 69 shows a selected portion of sample
JOBEXIT as shipped with VSE/ESA:

PUNCH ' PHASE $JOBEXIT,S,SVA '
 START ð

XR 15,15 ZERO VALUE MEANS NORMAL PROCESSING
BR 14 RETURN TO CALLER

\ DC CL8'JCLLUSEX' IDENTIFIER OF EXIT LIST
\ DC CL8'$JOBEXðð' EXIT ROUTINE NAME
\ DC CL8'IDENTIFð' IDENTIFIER OF THE ROUTINE
\ DC CL8'$JOBEXð1' EXIT ROUTINE NAME
\ DC CL8'IDENTIF1' IDENTIFIER OF THE ROUTINE
\ DC X'FFFFFFFF' END OF TABLE
 END

Figure 69. Part of Content of JOBEXIT Sample

Installing a List of JCL Exit Routines
If you want to install several JCL exit routines, you must proceed in the following
sequence:

1. Catalog your JCL exit routines into system library IJSYSRS.SYSLIB and add
them to the SVA load list $SVA0000. $SVA0000, initially shipped as an empty
phase, is the one SVA load book, that is reserved for private use. Refer to
“Automatic SVA Loading During System Startup” on page 33 for further details.

Figure 70 on page 218 shows a sample job to catalog and add phases to an
SVA load list. In this example, three JCL exit routines ($JOBEX01, $JOBEX05
and $JOBEX07) are added to $SVA0000 by means of the SVALLIST macro.

 Chapter 6. Using VSE Facilities and Options 217

 Using VSE Facilities and Options

// JOB BUILD IPL LOAD LIST
// OPTION CATAL
// LIBDEF PHASE,CATALOG=IJSYSRS.SYSLIB,PERM
// EXEC ASMA9ð....

TITLE '$SVAðððð - IPL LOAD LIST FOR JCL EXIT ROUTINES'
 SVALLIST $SVAðððð,($JOBEXð1),($JOBEXð5), C
 ($JOBEXð7)
 END
/\
// EXEC LNKEDT,PARM='MSHP'
/&

Figure 70. Creating an SVA Load List for JCL Exit Routines

2. IPL your VSE/ESA system. Your JCL exit routines will be loaded into the SVA
during IPL, while the load book $SVA0000 is being processed automatically.

3. Modify sample JOBEXIT as shown in Figure 71. After making the required
changes, assemble, catalog and load phase $JOBEXIT into the SVA.

PUNCH ' PHASE $JOBEXIT,S,SVA '
 START ð
\ XR 15,15 ZERO VALUE MEANS NORMAL PROCESSING
\ BR 14 RETURN TO CALLER

DC CL8'JCLLUSEX' IDENTIFIER OF EXIT LIST
DC CL8'$JOBEXð5' ROUTINE NUMBER 5
DC CL8'ACCOUNT' IDENTIFIER, SELECTED BY THE USER
DC CL8'$JOBEXð1' ROUTINE NUMBER 1
DC CL8'TUNING' IDENTIFIER, SELECTED BY THE USER
DC CL8'$JOBEXð7' ROUTINE NUMBER 7
DC CL8'MY APPL ' IDENTIFIER, SELECTED BY THE USER
DC X'FFFFFFFF' END OF TABLE

 END

Figure 71. JOBEXIT Sample with Several JCL Exit Routines

Notes:

1. If you start with step 3 and omit steps 1 and 2, each job control (JCL)
statement (even SET SDL) may cause a problem, since JCL tries to load the
JCL exit routines, which cannot be found in the SVA.

 2. The statement

// EXEC ASMA9ð....

 calls the High Level Assembler. Refer to “High Level Assembler
Considerations” on page 174 for further details.

218 IBM VSE/ESA Guide to System Functions

 Using VSE Facilities and Options

Naming Convention for JCL Exit Routines

The names of the JCL exit routines must have the format $JOBEX0n, where n
is a decimal digit (from 0 to 9).

The value used for n influences the sequence of invocation. The JCL exit
routine with the smallest digit is invoked first. The JCL exit routine with the
highest digit is invoked last. Thus in Figure 71, $JOBEX01 is invoked first even
though it is the second JCL exit routine defined in sample JOBEXIT.

Whenever you make changes to a JCL exit routine, you must catalog it and then
load it into the SVA via the SET SDL command. SET SDL can only be issued in
the BG partition. To use this command permanently, modify procedure $0JCL (by
using skeleton SKJCL0). Procedure $0JCL and skeleton SKJCL0 are described in
the manual VSE/ESA Administration under “Skeletons for Starting Up BG Partition”.

Activating and Deactivating JCL Exit Routines
The JCL command, JCLEXIT, supports multiple JCL exit routines. With this
command, you can activate or deactivate:

� A single JCL exit routine.

� All routines listed in $JOBEXIT.

The format is as follows:

55─ ─JCLEXIT─ ──┬ ┬───────────────────────────────── ────────────────────────5%
 └ ┘── ──┬ ┬─ENABLE── ──┬ ┬──────────────

└ ┘─DISABLE─ └ ┘──,routinename

Following are examples for activating and deactivating individual JCL exit routines
specified in $JOBEXIT:

JCLEXIT DISABLE,$JOBEXð1
JCLEXIT ENABLE,$JOBEXð5

You can also activate or deactivate $JOBEXIT as a whole. Depending on what you
have specified in $JOBEXIT this means activating or deactivating a single JCL exit
routine or a list of JCL exit routines (as shown in Figure 71 on page 218):

JCLEXIT DISABLE,$JOBEXIT
JCLEXIT ENABLE,$JOBEXIT

Note: If no operand is specified in the JCLEXIT command, you get a report on
SYSLOG about the status (enabled or disabled) of all JCL exit routines.

Without operands JCLEXIT can be issued in any dynamic or static partition. With
the operands ENABLE and DISABLE it can only be issued in the BG partition.

Resolving Symbolic Parameters in JCL Commands
Macro GETSYMB resolves symbolic parameters in the JCL commands of JCL exit
routines. To resolve symbolic parameters, you first have to scan the JCL statement
and isolate the symbolic parameters. You then invoke the macro GETSYMB to get
the value of a symbolic parameter. GETSYMB has four required operands. They
can be specified either by a symbolic address or a pointer in a Register.

 Chapter 6. Using VSE Facilities and Options 219

 Using VSE Facilities and Options

55─ ──label GETSYMB AREA= ──┬ ┬─area─ ──,PARMNAM= ──┬ ┬─parmnam─ ──,VALBUF= ──────5
└ ┘──(rx) └ ┘──(ry) ───

5─ ──┬ ┬─valbuf─ ─,─ ──LENFLD= ──┬ ┬─lenfld─ ───────────────────────────────────5%
└ ┘──(rz) ── └ ┘──(ru) ──

As shown, you need to specify the addresses for the following:

AREA= A work area of 100 bytes which is used as control block for
saving macro call-related information.

PARMNAM= A 7-byte field, containing the symbolic parameter name. A
parameter name shorter than 7 bytes must start with the first
position from the left. Unused bytes must be blank.

VALBUF= A buffer of 50 bytes which will receive the character string that
was defined in a previous SETPARM statement for the symbolic
parameter name. Since this value can be up to 50 characters, the
length of the buffer must be 50 bytes.

LENFLD= A 2-byte field. The system moves the length of the value in
VALBUF into this 2-byte field.

Registers 0, 1, 13, 14, and 15 are destroyed by the GETSYMB macro. Register 15
always contains the return code: return code 0 means that the request was
successful and the symbol was found. Return code 10 means that the symbol was
not found.

 Register Conventions
Register conventions apply for every JCL exit routine. They are shown in Figure 67
on page 212. The following applies to the anchor field in Register 6: At the first call
after IPL, JCL loads X'00000000' into Register 6 before passing control to the JCL
exit routine. For all subsequent calls, Register 6 contains the value that was
returned from the preceding call. This allows, for example, a JCL exit routine to get
storage and have its address saved from call to call.

Note: JCL exit routines are invoked asynchronously by all partitions. A change of
the anchor field may not be meaningful if more than one partition is active.
The anchor field is maintained only per exit routine, not per partition.

Handling of a Changed JCL Statement
If a JCL exit routine changes one or more operands of a JCL statement and further
exit routines are to be activated, then the changed statement is passed to the
remaining exit routines. If an exit routine sets a statement into “IGNORE” status (on
return, Register 15 is not equal to zero), none of the subsequent exit routines will
get control for this statement.

Thus it is important for you to consider the:

� Priority of the JCL exit routines in sample JOBEXIT (see “Naming Conventions”
on page 219).

� Effect of each exit routine on the statements of your job stream.

End of Programming Interface Information

220 IBM VSE/ESA Guide to System Functions

 Using VSE Facilities and Options

Programming Interface Information

Writing a Job Accounting Interface Routine
Job accounting interface support is available for all partitions in the system. At the
end of each job step or job, accounting information is accumulated in a table for
that partition and can be processed by a user-written routine. This routine can
extract data for such purposes as charging system usage and supervising system
operation, or for planning new applications or changing the system configuration.

The routine must be relocatable, and should be SVA eligible (see Note below) for
performance reasons. With the distribution volume, IBM provides a dummy phase
$JOBACCT as part of the system sublibrary IJSYSRS.SYSLIB. If you decide to use
the job accounting facility, you must catalog your routine into the system sublibrary.
At IPL, $JOBACCT is automatically loaded into the SVA if it is SVA eligible. If not,
$JOBACCT is loaded into the corresponding partition at the end of each job step. A
message is issued during IPL if $JOBACCT could not be loaded into the SVA. To
catalog your routine as SVA eligible, the PHASE statement must include the SVA
parameter; this causes the phase, after it has been cataloged, to be loaded into the
SVA, replacing the dummy phase provided by IBM.

Since the processing of this kind of information is an overhead element, the user
routine should be efficient and avoid unnecessary reduction or reformatting of data.
For details about the VSE/POWER job accounting support, refer to the manual
VSE/POWER Application Programming under “Job Accounting by VSE/POWER”.

Note: Normally, an SVA eligible routine is programmed to be read-only and
re-enterable. The job accounting interface routine is an exception.
$JOBACCT runs with a PSW protection key of 0 which means it does not
have to be read-only and may modify itself or may modify tables contained
within itself (but not by I/O operations; I/O operations for $JOBACCT must
be performed in the related partition GETVIS area). Also, it is called by job
control, and the job control program serializes $JOBACCT execution. In
other words, concurrent execution for more than one partition cannot
happen and, therefore, the routine need not be re-enterable.

VSE/ESA provides skeleton SKJOBACC in VSE/ICCF library 59.

Job Accounting Information
When the support for basic job accounting is activated, a job accounting table
comprising fourteen fields is included for each partition in the system. At the end of
each job step and job, information is stored in fields 1 to 14 of the Job Accounting
Table (see Figure 72 on page 222).

SIO accounting (refer to fields 15 and 16 of the job accounting table) is performed
for each partition for the devices specified during IPL. The maximum is 255 and
has no relation to the number of devices specified for the total VSE system. If more
devices are accessed than the number specified, SIOs on the excess devices will
not be counted.

Note: The job accounting table resides below 16MB (RMODE 24).

 Chapter 6. Using VSE Facilities and Options 221

 Using VSE Facilities and Options

Note that the difference between Start and Stop times will not necessarily equal the
sum of CPU, All Bound, and Overhead times. All Bound and Overhead times will
vary, depending on the number of active partitions and the type of partition activity.
CPU time is accurate for each partition, but it may not be reproducible. That is, the
same job being executed under different system conditions (varying number of
active partitions, logical transient area available, etc.) may show differences in CPU
time.

Figure 72. Job Accounting Table

Fld Disp Len Contents

1 0-7 8 Job name. 8-byte character string taken from JOB statement.

2 8-23 16 User information.16 characters of information taken from the JOB
statement.

3 24-25 2 Partition ID: BG, FB, FA, F9, and so on.

4 26 1 Cancel Code. Refer to VSE/ESA Messages and Codes manual.

5 27 1 Type of Record. S=job step; L=last step of job.

6 28-35 8 Date when job step ended, depending on the JCL STDOPT DATE option.

7 36-39 4 Previous Job Step Stop Time. 0hhmmssF, where h=hours, m=minutes,
s=seconds, F is a sign (in packed decimal format).

8 40-43 4 Job Step Stop Time (in same format as start time).

9 44-47 4 Job Step Duration in 300ths of a second.

10 48-55 8 Phase name, 8-byte character string taken from the EXEC card.

11 56-59 4 (4 K) multiplied by (number of pages referenced or PFIXed for real
execution) in the current job step.

12 60-63 4 CPU Time. 4 binary bytes given in 300ths of a second. Time is calculated
from exit of the user-written routine called during job control to the next
entry of the routine. Time used by the user-written output routine is
charged to overhead of the next record.

13 64-67 4 Overhead Time. 4 binary bytes given in 300ths of a second. Includes time
taken by functions that cannot be charged readily to one partition (such as
attention routine and error recovery). System overhead time is distributed
to the partitions in proportion to the used CPU time.

14 68-71 4 All Bound Time. 4 binary bytes in 300ths of a second. Includes the time
the system is in the wait state divided by the number of partitions running.

15 72- SIO Tables. Variable number of bytes. Six bytes are reserved for each
device accessed by the Job Step. First two bytes are X'0cuu', next four
are hex count of SIOs for the Job Step. Stacker Select commands for
MICR devices are not counted. Error recovery SIOs are not charged to the
Job Accounting table. Devices are added to the table as they are used.

16 1 Contents: X'20'. Indicates end of SIO tables.

 Programming Considerations
If physical IOCS is used for printing, you must 'space after' to prevent overwriting of
job control statements.

For efficiency, an overlay structure should be avoided and the length of the
program should preferably not exceed one library block.

222 IBM VSE/ESA Guide to System Functions

 Using VSE Facilities and Options

If the job accounting program is canceled as the result of an error condition, the
current information cannot be retrieved, the job accounting information for the
current job step is unreliable. However, provision is made that the job accounting
information for any subsequent job steps will be correct, provided the cancelation
was not caused by an error in the $JOBACCT routine itself. If there was an error in
the $JOBACCT routine, it must be corrected first.

In order to avoid unintentional cancelation of the job accounting program by
operator action, the operator should issue the MAP command and check the job
name for the running partition. If the job name is 'JOBACCT', the job accounting
routine is active; the CANCEL command should not be issued until the original job
name is displayed after another MAP command.

 Register Usage
Important data for the user's job accounting routine are passed in the following
general registers:

11 Length of the job accounting table
12 Base address for $JOBACCT
13 Address of the user save area
14 Return address to job control
15 Address of the job accounting table

If $JOBACCT uses LIOCS, the contents of general registers 14 and 15 must be
saved (also registers 0 and 1, if used) because LIOCS uses these registers.

Save Area for the User's Routine
The address of a save area that can be used by the job accounting routine is
passed in general register 13.

Tailoring the Program
The requirements of the program may be simply to record the accounting
information as part of the SYSLST output for each job step or job, or it may be to
gather information to be used for charging system usage.

If data is to be written out on a disk or tape, the save area can be used for
communicating between job steps. Such information as the disk address for the
next record or an indication that tape labels have been successfully processed, or
even the DTF used to control the output, may be stored in the save area.

End of Programming Interface Information

 Checkpointing Facility
Note: The checkpointing facility can be used with static but not with dynamic

partitions. Also, it does not support 31-bit addressing and data spaces. The
macro CHKPT is canceled when issued from a partition that crosses the
16MB line and data spaces that a program may access are not recorded
during CHKPT requests.

The progress of a program that performs considerable processing in one job step
should be protected against destruction in case the program is canceled. VSE/ESA
provides support for taking up to 9999 checkpoint records in a job. Through this

 Chapter 6. Using VSE Facilities and Options 223

 Using VSE Facilities and Options

facility, information can be preserved at regular intervals and in sufficient quantity to
allow restarting a program at an intermediate point. The CHKPT macro (or the
corresponding high-level language statement) causes the checkpoint record to be
stored on a magnetic tape or disk. For details about the CHKPT macro, refer to the
manual VSE/ESA System Macro Reference under “CHKPT Macro”.

The RSTRT job control statement restarts the program from the last or any
specified checkpoint taken before cancelation.

When a checkpointed program is to be restarted after a new IPL, the partition must
start at the same location as when the program was checkpointed and its end
address must not be lower than at that time unless a lower end address was
specified in the CHKPT macro instruction. Unless you reestablish all linkages to
SVA phases yourself, the contents and location of the modules in the SVA when
restarting must also be the same as when the program was checkpointed. The SDL
must be identical if the restarted program uses a local directory list (for example,
one that was generated by the assembler language macro GENL).

In a program using checkpoints, avoid having linkage into the SVA at the point in
the program where the CHKPT macro call is issued.

If any pages of a virtual mode program were fixed when the checkpoint record was
taken, the real address area allocation for the partition must also start at the same
or a lower location and its end address must be at least as high as at checkpoint
time. The pages that were fixed are refixed by the supervisor when the program is
restarted.

Restarting a Program from a Checkpoint
To restart a program from a checkpoint the RSTRT job control statement is used.
The sequence of job control statements that must be submitted to restart a program
is as follows:

1. A JOB statement specifying the jobname used when the checkpoints were
taken.

2. ASSGN statements, if necessary, to establish the I/O assignments for the
program that is to be restarted.

3. A RSTRT statement specifying

a. the symbolic name of the tape or disk device on which the checkpoint
records are stored.

b. the sequence number of the checkpoint record to be used for restart.

c. for checkpoint records on disk the filename (DTF name) of the checkpoint
file.

4. An end-of-job (/&) statement.

Figure 73 shows the sequence of job control statements needed to restart a
checkpointed program that ended abnormally due to, for example, a power failure.
Following are the characteristics of the checkpointed program that must be
considered for restart:

� The job name specified in the JOB statement was CHECKP; the same name
must be used for restart.

224 IBM VSE/ESA Guide to System Functions

 Using VSE Facilities and Options

� The checkpoint records were written on magnetic tape; therefore, no filename
need be specified in the RSTRT statement.

� The symbolic device name SYS006 is used for the checkpoint file.

� The sequence number of the last checkpoint record written was 0013; this or
any previous checkpoint record can be used for restart (the sequence numbers
are printed by VSE/Advanced Functions on the SYSLOG device).

In reconstructing the job stream note that the // RSTRT statement physically and
functionally replaces the // EXEC statement originally used.

Another important consideration is the repositioning of files on magnetic tape or
disk. Assembler language users may consult the manual VSE/ESA System Macro
Reference under “CHKPT Macro” which discusses the topic in context with using
the CHKPT macro. High-level language users should consider printing a file
processing status record for each checkpoint that is taken during the execution of a
program. This record should indicate the name of the file(s) read or written on
magnetic tape or disk when the checkpoint is taken.

// JOB CHECKP
// ASSGN SYSðð6,38ð CHKPT TAPE
// ASSGN ...
// ASSGN ...
// RSTRT SYSðð6,ðð13

 /&

Figure 73. Example of a RESTART Job

Note: If you are restarting a program that uses multi-extent disk files, always use
a checkpoint that was taken on the last opened extent of the file. If you do
not, the job is canceled with message 4n40D.

Using Timer Services
The following timer services are available:

 � Time-of-day clock
 � Interval timer

The time-of-day clock is a hardware feature. The interval timer is a software feature
which makes use of the hardware features CPU timer and clock comparator. The
use of timer services is briefly discussed below. Timer services are automatically
provided.

 Time-of-Day Clock
The time-of-day (TOD) clock provides a consistent measure of elapsed time
suitable for time-of-day indication.

The TOD clock support also enables programs to issue the GETIME macro
instruction, which causes the exact time-of-day to be stored in general register 1. A
description of the use of the GETIME macro instruction is given in VSE/ESA
System Macro User's Guide under “Time-of-Day Clock”.

The time-of-day and the date are automatically included with each // JOB and
/& job control statement that is printed on SYSLST or SYSLOG.

 Chapter 6. Using VSE Facilities and Options 225

 Using VSE Facilities and Options

During the IPL procedure, if IPL is performed from SYSLOG, a message is printed
on the operator console to inform the operator of the status of the date, clock, and
zone. If necessary, the operator can correct this information in the SET command.

 Interval Timer
The interval timer can be used by programs (main tasks or subtasks or both) that
need to schedule certain processing based on discrete time intervals. If a problem
program is written with the appropriate macros and routines, the interval timer
causes an external interrupt when the time limit established by the program has
elapsed.

Several VSE macros relate to interval timer support. For information about using
these macros, refer to the manual VSE/ESA System Macro User's Guide under
“Interval Timer”.

DASD Sharing with Multiple VSE Systems
If your installation consists of more than one VSE system, you may consider
sharing disk devices (called DASD sharing) among them. Rather than assigning a
fixed number of devices to the different systems, you can combine the total number
of available devices into a disk pool which is shared by all VSE systems. DASD
sharing between two or more VSE systems has several advantages:

� Library maintenance is easier if only one set of libraries needs to be
maintained.

� If you run several CICS subsystems, file maintenance of CICS files becomes
easier.

� Several VSE systems may share the VSE/POWER files thus distributing the
batch work load.

� Direct access storage space may be saved, as only one copy of the data is
required instead of multiple copies.

As long as the different VSE systems access the shared devices for reading only,
the integrity of your data is preserved. If, however, data on the shared disk devices
are accessed in write mode by more than one system at the same time, data
integrity is no longer ensured, unless special precautions are taken. The Track Hold
and DASD File Protect functions do not apply here because none of the sharing
systems is aware of what the other is doing.

VSE/ESA provides programming support which allows to access a DASD device
from different VSE systems in read and write mode. This programming support is
based on the channel switching and/or the string switching feature.

Note: If a DASD sharing environment includes at least two CPUs, procedure
$COMVAR must identify these CPUs. You can update this procedure with
skeleton SKCOMVAR described in the manual VSE/ESA Administration
under “Skeleton for Tailoring $COMVAR Procedure (SKCOMVAR)”.

226 IBM VSE/ESA Guide to System Functions

 Using VSE Facilities and Options

Reserving Devices for Exclusive Use
Channel command words (DEVICE RESERVE / DEVICE RELEASE) allow one I/O
interface to reserve a disk drive for exclusive use. Any other I/O interface that
attempts to access such a reserved disk drive will receive a 'device busy' indication.

Reserving disk devices has several disadvantages:

� An entire disk pack has to be reserved even if only a single record is to be
updated. This may lead to a severe performance degradation.

� If one CPU tries to access a volume which is already reserved by another CPU,
no specific indication is given that the volume is not available.

� When an application program terminates abnormally, the system does not
automatically release reserved disk drives; the other VSE system(s) may have
to wait indefinitely if they try to access data on the reserved disk drives.

VSE/ESA provides a method that avoids those risks. The sharing of data on disk is
controlled on the resource level, not on the device level. This method, called
"resource locking", is described in the remainder of this section.

 Resource Locking
A program running under VSE/ESA is capable of protecting data by reserving
('locking') and releasing ('unlocking') a named resource. This resource may, for
example, be a table in storage, a phase name, a disk volume identifier, or a library
name.

If a job is canceled, any resources which it has locked are unlocked automatically.

Locking and unlocking occurs

� within a partition: the resource is shared between tasks belonging to the
partition,

� within one computing system: the resource is shared between partitions, or

� within a multiple-CPU installation: the resource (a catalog or a file, for example)
is shared between VSE systems.

Locking within one computing system is called 'internal locking', locking across
systems is called 'external locking' or 'cross-system locking'. All functions provided
for internal locking are available for external locking as well.

Compared with the method of reserving of entire volumes, locking by named
resource offers the following advantages:

� protection can be limited to a portion of an entire volume (a file, for example);

� data can be shared, comparable to shareoptions 1 and 2 of VSE/VSAM, that is,
locking is not necessarily exclusive;

� if a lock request cannot be satisfied because the corresponding resource is
already under exclusive control by another task (by another VSE system
perhaps), the requestor can be immediately notified.

If you are planning to switch from a one-system to a multiple-system setup and you
have used the VSE/VSAM access method in the past, you do not have to change
your source programs in order to utilize DASD sharing across systems. Resource

 Chapter 6. Using VSE Facilities and Options 227

 Using VSE Facilities and Options

protection across systems is accomplished by the VSE/VSAM open routine. For
SAM files in VSE/VSAM-managed space, the open routine performs the
cross-system locking, too.

If a VSE/VSAM file defined with shareoption 1 or 2 is opened for update by one
program, then no other user (in another partition of the same VSE system or in
another system) can open the file for update at the same time. Concurrent
updating of a VSE/VSAM file defined with shareoption 4,4 is allowed for programs
running in one system or in different systems. While a file is opened for update by
one program, a second program running in another partition may open the file for
update.

For libraries in VSE/VSAM-managed space, use shareoption 3. Refer also to
“Defining a Library, Sublibrary, or a SYSRES File” on page 102.

Files of other types should be locked explicitly in order to have the file protected
against concurrent update by other tasks.

IBM-supplied programs such as the linkage editor or the librarian do this locking
whenever they are about to update a library. If you want to do your own resource
locking, you must use the assembler language macros

� DTL, GENDTL, and/or MODDTL to define the named resource

� LOCK and UNLOCK to perform the actual locking control.

Via the resource definition macros, a resource lock control block is generated.
Among other things, it defines

� the name of the resource

� the level of locking: exclusive or shared with other tasks

� the scope of locking: within one system or across systems

� the time of automatic unlocking: at the end of the job step or at end-of-job.

Note that the locking mechanism functions only if each task that shares a particular
resource subjects itself to the lock control and uses one and only one name for the
resource.

The following macro statement

EXAMPLE DTL NAME=SHAREFL,CONTROL=S,LOCKOPT=2,SCOPE=EXT

defines a lock control block for the resource SHAREFL. The SCOPE parameter
indicates that the resource should be shared across systems. The combination of
CONTROL=S and LOCKOPT=2 means: for a lock request to be granted, other
tasks with a definition of CONTROL=S may have concurrent access, but not more
than one task with a definition of CONTROL=E.

The LOCK macro requests access to a named resource. The requestor may
specify which action the system is to take if the lock request cannot be granted. For
the above DTL, the statement

 LOCK EXAMPLE,FAIL=WAIT

requests access to the resource with the name SHAREFL. If the resource is locked
such that no concurrent access is allowed, the requesting task should be set into
the wait state until the access can be granted.

228 IBM VSE/ESA Guide to System Functions

 Using VSE Facilities and Options

The use of the lock control macros is described in detail in the manuals VSE/ESA
System Macro User's Guide under “Resource-Share Control” and VSE/ESA System
Macro Reference under “LOCK Macro”.

Lock Communication File
Resource protection across systems requires a special system file which reflects
the system-wide locking status to all the sharing systems at any time. A resource
which is locked across systems will be entered by the operating system into this
lock communication file (or 'lock file' for short). The disk device where this file
resides must be defined to all the sharing systems by the DLF command at IPL.

There must be an agreement between the sharing systems which ensures that all
systems use the same lock communication file. All systems which take part in the
DASD sharing must define the disk drive where this file is located as shareable.

How to Initialize a Shared VSE Environment
To define a disk device as shareable across systems, you must include the SHR
parameter in the IPL ADD command. For example:

 ADD 14ð,339ð,SHR

All disk devices of the shared disk pool should be defined (in all sharing systems)
as shareable. At least the disk drive where the lock file resides has to be defined
as shareable.

If you have to add disk devices whose volume labels are non-unique within your
VSE system, then problems may occur when disk devices are addressed by
VOLID. For example:

 DLF VOLID=SYSWK1, ...

If SYSWK1 exists twice in your environment, it is not predictable on which of the
two volumes the lock communication file will be allocated. To make VOLID
addressing unique, use the DVCDN (device down) operand when adding
non-unique volumes you do not want to have accessed by VOLID addressing. For
example:

 ADD 133,339ð,SHR,DVCDN

You must not specify DVCDN when adding devices that will be addressed by
VOLID.

The lock communication file is created as a special system file with the dedicated
file name 'DOS.LOCK.FILE' via the IPL command DLF (Define Lock File). The DLF
command has to be issued immediately after the ADD and DEL commands. When
the DLF command is missing in the IPL procedure and at least one device ADDed
as shareable, the operator is prompted for entering the DLF command. Two
versions of the DLF command are available:

� a long version used to create a new lock file or to open an existing one,
depending on the TYPE operand, and

� a short version to refer to an already existing lock file.

Refer to the manual VSE/ESA System Control Statements under “DLF” for a
detailed description of the DLF command, its operands, and its syntax.

 Chapter 6. Using VSE Facilities and Options 229

 Using VSE Facilities and Options

You should try to place the lock file on a disk drive that is not subject to heavy I/O
traffic; for example, keep it separate from files such as SYSRES, the page data set,
or VSE/POWER files.

The operand DSF defines the lock file as secured or not secured. The DASD
sharing support depends heavily on the availability and integrity of the lock
communication file. This file should therefore be defined as a secured file.

The default size of the lock file is one cylinder on a CKD device or 80 blocks on an
FBA device.

The TYPE operand specifies whether or not a new lock file is to be created. With
TYPE=F (for Format), a new lock file is created every time. With TYPE=N, an
existing lock file is opened, if the extent information in the DLF command matches
that of the existing lock file. If the extent information does not match, the system
prompts the operator to decide whether a new lock file is to be created.

The short forms of the DLF command

 DLF UNIT=cuu
 DLF VOLID=volser
 DLF UNIT=cuu,VOLID=volser

are used by the other CPUs which join the sharing environment to reference the
already existing lock file. The short form may be used also by the first IPLing CPU
if you want to resume with the lock file as it existed at the end of a preceding
production period. On the other hand, submitting the long form for an already
existing lock file is not harmful if TYPE=N is specified.

Note: During the execution of the DLF command, no other sharing system can
access the lock file. Therefore, lock and unlock requests cannot be
serviced. A performance degradation may be encountered on the already
active systems while another (new) system is in the process of IPL.

DASD Sharing under VM
DASD sharing is also possible under VM. Disks which are defined with the multiple
write feature (MWV) can be used by different VM users as shared disks (minidisks
or full disk packs).

Resource sharing across systems functions properly only if each sharing (virtual)
CPU is discernible by a unique CPU identification. Therefore, for any virtual
machine, a different CPU identification must be defined. Before performing IPL for a
virtual machine, the VM user has to define a unique CPU identification via the
OPTION CPUIDxxxx in the directory or the CP command SET CPUID xxxxxx.
Without this command, severe lock file errors will occur.

Special Considerations for Shared Libraries
Libraries may reside on shared disks and may be accessed by more than one
CPU. IBM's Librarian and Linkage Editor programs utilize the LOCK/UNLOCK
management thereby protecting libraries against concurrent write access.

The following precautions should be kept in mind:

1. If an SVA-resident phase is updated in a shared library, the update is not
reflected in the SVA or SDL of the other sharing system. You have two options:

230 IBM VSE/ESA Guide to System Functions

 Using VSE Facilities and Options

a. Continue to work on the other system with the old copy of the particular
phase.

b. Run a SET SDL on the other sharing systems, with the appropriate phase
name. This would refresh the contents of the SDL or SVA.

2. Multiple VSE/ICCF systems may not share one VSE/ICCF library, but should
rather have their own dedicated VSE/ICCF library, each.

3. To ensure read integrity when sharing libraries across CPUs under VM, the
SHR parameter of the IPL ADD statement must be used.

Recorder, Hardcopy, and History Files in a DASD Sharing Environment
Three system files are usually referenced by the logical unit name SYSREC:

� The recorder file (file name IJSYSRC)
� The hardcopy file (file name IJSYSCN)
� The history file (file name IJSYSHF)

The IPL DEF Command “assigns” SYSREC to a physical device. The recorder and
the hardcopy file must be part of SYSREC. The history file need not reside on
SYSREC. However, it is a good practice to define the history file also as part of
SYSREC. For the placement of these files within a DASD Sharing environment, the
following rules should be observed.

To ensure that library maintenance under control of the MSHP program is recorded
in only one history file, the system standard label area of each sharing system has
to contain identical DLBL/EXTENT information for the history file. The definition
(DEF SYSREC=cuu) or assignment (ASSGN SYSnnn, cuu) must be for the same
physical device on which the common history file resides. This enables you to do
library maintenance on the shared SYSRES file and on any of the shared or
non-shared private libraries without loosing track of the change status of your
libraries.

For the recorder and the hardcopy file, each sharing system has to keep its own
extent on the pack where SYSREC is defined. The DLBL statement must contain,
for each sharing system, a unique file identifier of IJSYSRC and IJSYSCN;
non-overlapping extents on the SYSREC pack must be defined in the EXTENT
statement.

An Example of a Two-System Installation
The following example shows how two VSE systems are set up to share a string of
IBM disk devices. Both systems run on separate processors, named Processor I
and Processor II. Figure 74 on page 232 presents the configuration of disk
devices.

 Chapter 6. Using VSE Facilities and Options 231

 Using VSE Facilities and Options

Processor I

Number of Devices IBM Device Type

8 3390

4 3390 (shared)

Processor II

Number of Devices IBM Device Type

4 3390

4 3390 (shared)

Figure 74. Example of a DASD Sharing Configuration

The following files are shareable by the two systems:

� The SYSRES file

� The history file

 � VSE/POWER files

 � Private libraries

� VSE/VSAM catalog and files

� Other data files

Each supervisor used must be cataloged with a unique name.

Similarly, two VSE/POWER phases are generated, each with a unique name; the
VSE/POWER macro must specify the SYSID and SHARED parameters. You can
operate with only one VSE/POWER phase if SYSID is changed dynamically at
autostart time.

If during VSE/POWER bring-up no FORMAT statement is included in the
AUTOSTART file, the operator will be prompted as to whether VSE/POWER files
are to be formatted or not. If the operator replies D,A or the AUTOSTART file
contains a FORMAT=D,A statement, VSE/POWER asks the operator whether
another system is already IPLed and whether the shared files can be formatted.

Note: VSE/POWER files should be formatted only once.

232 IBM VSE/ESA Guide to System Functions

 Using VSE Facilities and Options

 \ IPL Procedure for Processor I:

 ð1F,$$A$SUP1,NOLOG,VSIZE=25ðM,VIO=512K,VPOOL=256K
 ADD 148:155,339ð
 (1) ADD 23ð:233,339ð,SHR VIA CHANNEL 2
 .
 .

unit record devices, terminals, etc.
 .
 .
 (2) DLF UNIT=231
 (3) DEF SYSREC=23ð,SYSCAT=231
 (4) DLA NAME=LABEL1,UNIT=148
 DPD UNIT=233,CYL=45ð,DSF=N
 SYS
 SVA SDL=7ðð,GETVIS=(768K,6M),PSIZE=(32ðK,6M)

 \ IPL Procedure for Processor II:

 ð1F,$$A$SUP1,NOLOG,VSIZE=25ðM,VIO=512K,VPOOL=256K
 ADD 34ð:343,339ð
 (1) ADD 33ð:333,339ð,SHR VIA CHANNEL 3
 .
 .

unit record devices, terminals, etc.
 .
 .
 (2) DLF UNIT=331
 (3) DEF SYSREC=33ð,SYSCAT=331
 (4) DLA NAME=LABEL2,UNIT=34ð
 DPD UNIT=333,BLK=8ðððð,DSF=N
 SYS
 SVA SDL=7ðð,GETVIS=(768K,6M),PSIZE=(32ðK,6M)

Figure 75. Example of IPL Procedures for a DASD Sharing Environment

Note that the values given in Figure 75 are examples which do not necessarily
reflect a running environment. The figure shows two sets of IPL commands (for two
DASD sharing systems). Notice that both ADD commands for the shared disks,
statements (1) in Figure 75, refer to the same packs although they specify different
device addresses. Each CPU accesses the shared disks via different channels: 2
and 3.

The short form of the DLF command is shown here, statements (2). If the system
which performs the first IPL refers to a non-existent lock file, it prompts the operator
to submit the long form of the DLF command. On Processor I, for example, the
long form would include the CYL and DSF specifications (similar considerations
apply to the DLA commands). If one or more ADD statements have the operand
SHR, you must enter a DLF command. Use the long form if the lock file does not
exist yet, or the short form if the lock file has already been created.

The SYSREC specifications, statements (3), refer to the same pack by different
device addresses. Each system uses its own label information area, defined on
separate packs and with unique names, statements (4).

 Chapter 6. Using VSE Facilities and Options 233

 Using VSE Facilities and Options

Complete ASI JCL procedures are not shown here. These procedures would
contain DLBL/EXTENT statements for the shared resources listed below:

� To be cataloged in the system standard label area (OPTION STDLABEL):

IJSYSRS SYSRES file
IJSYSHF history file

� To be cataloged in the system standard label area (OPTION STDLABEL) or in
the partition standard label area (OPTION PARSTD):

IJAFILE VSE/POWER account file
IJQFILE VSE/POWER queue file
IJDFILE VSE/POWER data file
IJSYSCT VSE/VSAM catalog
VSMSPCE VSE/VSAM data space
xxxxxxxx shared private libraries

Be aware that in addition labels for the following non-shared resources must be
uniquely defined for each system:

IJSYSCN hardcopy file
IJSYSRC recorder file
xxxxxxxx dedicated files and libraries

Error Recovery after System Breakdown
When one of the sharing systems breaks down, for example, due to a hardware
error, the other system(s) may enter the wait state.

Two error situations are possible:

1. The hardware malfunction occurred while the system was executing a LOCK or
UNLOCK request. The system has reserved the disk drive containing the lock
file by a DEVICE RESERVE channel program. Thus the other systems are
unable to execute LOCK or UNLOCK requests. The operator should press
"system reset" on the failing CPU; the device reserves will be reset.

2. Prior to the system breakdown, the failing VSE system has locked some vital
resources (for example, a VSE/VSAM catalog). The sharing VSE systems trying
to lock these resources will enter the wait state. They will remain in the wait
state until the failing system has been re-IPLed.

If an IPL on the failing system is not possible at once, use the attention
command UNLOCK SYSTEM=sys-id to unlock all resources locked by the
failing CPU. This command can be entered at any other CPU sharing the same
lock file. You should be extremely careful with the use of the attention
command UNLOCK. Enter this command only when you are absolutely sure
that the failing system has stopped and a new IPL is not possible. The attention
command UNLOCK when used to break the lock of a running system will cause
severe errors.

234 IBM VSE/ESA Guide to System Functions

 Using VSE Facilities and Options

Designing Programs for Virtual Mode Execution
This section describes programming techniques that may improve the efficiency of
programs that execute in virtual mode. Consider these techniques for new
programs to be written and old programs to be revised. The section also contains
information on the use of certain macros that are provided especially for virtual
storage. Programming conventions for the shared virtual area are also discussed.

Programming Hints for Reducing Page Faults
It may be worthwhile to spend some extra programming effort for tuning
virtual-mode programs that are used frequently or that require long periods of
processing time so that they will cause fewer page faults during execution. Page
faults generally occur when the size of the virtual-mode program exceeds the
number of page frames available to it during execution. Efforts to reduce the
number of page faults occurring in a program generally involve techniques for
reducing the size of the “working set” of the program. The term “working set” is one
that recurs often in discussions of virtual storage systems.

The working set of a program comprises those program pages which contain the
most frequently used sequences of instructions for a given period of time. The
working set of a program is not a fixed number of pages or instructions of that
program; this set changes as the execution of the program proceeds. For example,
a program doing an internal sort and writing a formatted table based on the results
of this sort would have two completely different basic working sets; one for the sort
function and one for the write functions.

Although the following section does not tell you how to determine the size of the
working set, it does provide techniques for reducing its size.

General Hints for Reducing the Working Set
There are three general rules to keep in mind when working toward a reduction of a
program's working set. The first is locality of reference ; that is, instructions and
data used together should be in storage near each other. Second is minimum
processor storage. In other words, the amount of processor storage necessary for
a program to do something should be kept as low as possible. Third is validity of
reference ; that is, references should be made only to data which will actually be
used.

The chief means of achieving locality of reference is to make execution sequential
whenever possible by avoiding excessive branching.

A program that executes sequentially normally requires a partition larger than the
same program when it does not execute sequentially. For example, the functions of
a section of code repeat themselves several times throughout the logic of your
program. You are tempted to write this code once and branch to it whenever
necessary, but branching violates the principle of locality of reference. Branching
may cause more page faults than would coding the routine in line each time it is
used. Also, it is easier for someone else to follow the logic of a program which is
written to execute sequentially.

Locality of reference can be achieved only to a limited extent by programs written in
a high-level language. Elements in arrays in FORTRAN or PL/I can be referred to
in the order in which they appear in storage. In FORTRAN, for example, arrays are

 Chapter 6. Using VSE Facilities and Options 235

 Using VSE Facilities and Options

ordered by columns. The elements of the array DIMENSION (2,2,2) are arranged
as follows in contiguous virtual storage locations:

 (1,1,1) (2,1,1)
 (1,2,1) (2,2,1)
 (1,1,2) (2,1,2)
 (1,2,2) (2,2,2)

For array structures of other compilers, refer to the appropriate programming
language reference manuals.

A routine which processes all the elements of such an array should refer to them in
this order. If only certain elements of an array are processed, the elements should
be arranged in the order in which they are to be processed. If arranging an array in
a certain manner causes it to be processed advantageously one time, but
disadvantageously another time, you should consider writing two arrays, even at
the cost of additional virtual storage.

In an assembler language program, you should keep frequently used data and
constants near each other in storage, and near the instructions which use them.
This contrasts with the traditional practice of having one area at the end of the
program reserved for all the data areas and constants. Also, seldom used data
should be separated from the frequently used data and placed with the routines
which use it.

Avoid, if possible, using chains which must be searched each time a data item is
required. If chains are unavoidable they should be kept in a compact area of
storage. This may result in some wasted (virtual) storage but will be better than
searches of large areas of storage.

Another good practice to help reduce paging is to initialize variables just before
they are to be used. For example, in PL/I instead of the following:

DCL A FIXED INIT (1ð);
 .
 .
DO B=1 TO 1ðð;

 A=A+B;
 END;

use:

DCL A FIXED;
 .
 .
 A=1ð;
DO B=1 TO 1ðð;

 A=A+B;
 END;

In the first example, PL/I initializes the automatic variable at the beginning of
execution. The second example does not require the page containing A to be in
processor storage until just before A is used.

An important help in reducing the amount of processor storage needed for
execution is to keep coding used for errors or other unusual occurrences in a
separate routine. If, for example, the main routine contains code for conditions that

236 IBM VSE/ESA Guide to System Functions

 Using VSE Facilities and Options

occur only 5% of the time, by moving this error code to a separate section of your
program, you can reduce the amount of needed processor storage for 95% of the
processing.

Frequently-used subroutines should be loaded near each other. Because of their
frequent use, these routines tend to be in processor storage almost continuously. If
they are scattered over several pages, each of these pages will need to be in
processor storage most of the time, thus increasing the size of the working set. By
loading these routines near each other, you reduce the number of pages required
in processor storage at any one time.

Subroutines should be designed to do as much processing as possible whenever
they are called. It is better to duplicate some code from the calling routine in the
called routine in order to avoid switching back and forth between routines. One
technique for accomplishing this is to have the calling program pass several
parameters to the subroutine and make one call, rather than passing one
parameter at a time and make several calls.

You should try to keep code that can be modified and code that cannot be modified
in separate sections of a large program. This will reduce page traffic by reducing
the number of pages that are changed. Also, try to prevent I/O buffers from
crossing page boundaries unnecessarily. Check the assembler listing and the
linkage editor map to determine where page boundaries occur in your programs.

Using Virtual Storage Macros
The macros designed for use by virtual-mode programs, which are discussed
below, perform the following services:

� Fix pages in processor storage (PFIX macro) and later free the same pages for
normal paging (PFREE macro).

� Indicate the mode of execution of a program (RUNMODE macro).

� Influence the paging mechanism in order to reduce the number of page faults,
to minimize the page I/O activity, and to control the page traffic within a specific
partition.

In order to use these macros you must use assembler language or, if your program
is written in a high-level language, you must write an assembler subroutine to make
use of them. Refer to the manual VSE/ESA System Macro Reference for a detailed
description of these macros under “PFIX Macro”, “PFREE Macro”, and “RUNMODE
Macro”.

Fixing Pages in Processor Storage
Parts of virtual-mode programs must be in processor storage only at certain times.
These parts include not only the instructions and data being processed at any one
moment, but also data areas for use by channel programs. Instructions and data
are always in processor storage when being used. Because of the nature of I/O
operations, the data areas for these operations could be paged out during the I/O
operation if something were not done to keep them in processor storage during the
entire operation. The operating system therefore fixes I/O areas in processor
storage for the duration of the I/O operation.

There are other parts of a program, however, which cannot tolerate paging, and
these parts are not necessarily kept in storage by the operating system. For

 Chapter 6. Using VSE Facilities and Options 237

 Using VSE Facilities and Options

example, programs that control time-dependent I/O operations cannot tolerate
paging. If a page fault were to occur during the execution of one of these programs,
the results would be unpredictable. A page fault in one of these programs can be
avoided by fixing the affected pages in processor storage, using the PFIX macro.

Notes:

1. You should define the amount of storage available for PFIX request with the
JCL command SETPFIX. Refer also to “Defining Real Storage” on page 13 for
additional details.

2. You can use the PFIX macro for programs running in a static or in a dynamic
partition.

It is also possible to PFIX pages in the SVA. Refer to the description of the PHASE
statement in the manual VSE/ESA System Control Statements under “PHASE”.

The pages that you fix by the PFIX macro are fixed in the processor storage
allocated to the partition in which the PFIX request is issued.

The PFIX macro fixes the pages in processor storage, regardless of whether these
pages are stored in contiguous page frames or not. The supervisor keeps a count
of the number of times a page has been fixed without being freed.

The PFREE macro does not directly free a page for paging out, but each time it is
issued, the counter of fixes is reduced by one. As soon as the counter for a page
reaches zero, the page can be paged out. At the end of a job step, all pages that
have been fixed during the job step are freed.

The PFREE macro should be used as soon as possible to make a maximum
possible number of page frames available to all programs running in virtual mode.

Figure 76 on page 239 is a skeleton example using the PFIX and PFREE macros.
After the execution of a PFIX macro, a return code is given in register 15. The
meanings of the return codes are:

0 The pages were fixed successfully.

4 You requested more page frames than the number of PFIXable page frames
available to the partition.

8 Insufficient number of free page frames were available at the time.

12 You specified invalid addresses in your macros, or the begin address was
higher than the end address, or a negative length was found.

16 A PFIX request was given with RLOC=BELOW, but at least one page of the
requested area is already PFIXed in a frame above 16MB.

20 Inconsistent function or option code in register 15.

Note in the example how the return code can be used to establish a branch to
parts of the program that handle these specific conditions.

238 IBM VSE/ESA Guide to System Functions

 Using VSE Facilities and Options

 .
 .
FIXRT PFIX ARTN,ARTNEND+2 FIX ARTN IN STORAGE

B \+4(15) BRANCH BY RETURN CODE
B HERE CONTINUE IF OK
B NOPAGES GO TO CANCEL IF PART TOO SMALL
B WAIT GO TO WAIT UNTIL PAGES FREED
B CANCL GO TO CANCEL IF ADDR INVALID

 .
 .
HERE BAL 14,ARTN GO TO ARTN

PFREE ARTN,ARTNEND+2 FREE ROUTINE AFTER EXECU-
 . TION
 .
ARTN (time-dependent processing which cannot be

paged out during execution)

 ARTNEND BR R14 RETURN
 .
 .
 NOPAGES LA R1,OPCCB

EXCP (1) WRITE MESSAGE TO OPERATOR
WAIT (1) WAIT FOR COMPLETION

 CANCL CANCEL ALL
 .
 .
 END EOJ
OPCCB CCB SYSLOG,OPCCW
OPCCW CCW X'ð9',MSG,X'2ð',61
MSG DC CL32'AM CANCELING PLEASE ENLARGE REAL'

DC CL29'ADDR AREA AND RESTART THE JOB'
 .
 .

Figure 76. PFIX and PFREE Example

Indicating the Execution Mode of a Program
You may have a program that must do different processing depending upon its
execution mode. It may be impractical to have two separate programs cataloged in
a library (one program for real mode and another program for virtual mode). The
RUNMODE macro can be issued during the execution of the program to inquire
which mode of execution is being used. A return code is issued to the program in
register 1.

Influencing the Paging Mechanism
Releasing Pages: With the RELPAG macro, you inform the page management
routines that the contents of one or more pages is no longer required and need not
be saved on the page data set. Thus, page frames occupied by these released
pages can be claimed for use by other pages, and page I/O activity is reduced.

Forcing Page-out: The FCEPGOUT macro is used to inform the page
management routines that one or more pages will not be needed until a later stage
of processing. The pages are given the highest page-out priority, with the result that
other pages, which may be needed immediately, are kept in storage. Except when

 Chapter 6. Using VSE Facilities and Options 239

 Using VSE Facilities and Options

the RELPAG macro is in operation, the contents of any pages written out are
saved.

Page-in in Advance: The PAGEIN macro allows you to request that one or more
pages be read into processor storage in advance, in order to avoid page faults
when the specified pages are needed in processor storage. If the specified pages
are already in processor storage when the macro is issued, they are given the
lowest priority for page-out.

Balancing Telecommunication Activity
The use of telecommunication and production processing at the same time may,
occasionally, result in long or erratic telecommunication response times. This may
be especially true if you have overcommitted processor storage, thus causing
excessive paging. The telecommunication application may have to compete so
strongly for page frames (because of high processing activity in the other partitions)
that response time increases substantially.

Telecommunication balancing improves response time by trading off
telecommunication response time against production partition throughput. TP
balancing tends to reduce response times, or at least to stabilize them.

After IPL, TP balancing can be activated by the operator issuing the TPBAL
command, which specifies the number of partitions or dynamic classes which can
tolerate delayed processing. These will be the lowest priority partitions. The TPBAL
command is also used to change or display the current setting; refer to the manual
VSE/ESA System Control Statements under “TPBAL” for details. Once activated,
the TP balancing function can be invoked by using TPIN/TPOUT macros.

The PLOAD DYNCTAB command of VSE/POWER resets a former TPBAL
command.

The TPIN macro signals to the operating system that an immediate demand for
system resources is being made by the telecommunication application, for instance,
when a message has arrived. After processing is completed, TPOUT informs the
operating system that the telecommunication application has no further processing
to do for the time being, and that the system resources that were exclusively used
for telecommunication should be released. If the TPOUT macro is not issued, the
performance in other partitions may be degraded.

The TPIN and TPOUT macros have been made available primarily for use in IBM
licensed telecommunication support, for example, VTAM or CICS. There is no need
for these macros to be used in user-written application programs that run under
control of IBM supplied telecommunication support.

Coding for the Shared Virtual Area
Note: The following description and the example shown in Figure 77 on page 242

are primarily intended for a 24-bit environment. For the linkage conventions
valid for a 31-bit environment, refer to “Planning for 31-Bit Programs” in the
manual VSE/ESA Extended Addressability.

Besides accommodating the system directory list (SDL) and phases that are
needed by the system, the shared virtual area (SVA) may contain user-written
phases that can be used concurrently by more than one program. SVA phases
must be re-enterable and relocatable; code that modifies itself will cause a

240 IBM VSE/ESA Guide to System Functions

 Using VSE Facilities and Options

protection check when executed from the SVA. This section presents some advice
on coding phases to use SVA facilities and suggests some standards for
base-register usage.

The basic assumptions for coding an SVA phase are:

� The re-enterable code must not modify any storage within its own storage area.
Therefore, the code must not contain DTFs, CCBs, or other control blocks that
are modified during execution.

� The phase can modify registers only if it saves and restores them for each
user.

� A user-specified work area (within the calling partition) must be provided for
storing registers and for any storage modifications.

Suggested register conventions:

� Use register 12 as the base register in both the main routine and the
re-enterable code.

� Use register 13 as base for the working storage area. It is the responsibility of
the main routine to provide addressability to the work area by loading register
13; the re-enterable routine must not modify register 13. The easiest way to
address the working storage area in the re-enterable code is by a DSECT that
defines the fields of the work area and a USING dsectname,13. In this way
symbolic addressing can be used.

� Use CALL, SAVE, and RETURN macros. As register 13 is the base register,
SAVE (14,12) and RETURN (14,12) result. Use register notation for CALL, for
example, CALL (15) Before issuing the CALL, load register 15 with the
transfer address. Register 14 will always contain the return address. The
standard is thus established of register 15 for calling and register 14 for
returning.

� Switches, and other areas that may be modified, can be placed in the working
storage area using base register 13.

Figure 77 on page 242 illustrates the suggested conventions: MASTER is the main
routine, SLAVE is the SVA phase.

 Chapter 6. Using VSE Facilities and Options 241

 Using VSE Facilities and Options

 MASTER CSECT
 BALR 12,ð
 USING \,12
 LA 13,SAVE

LOAD SLAVE,WORKAREA CANCELS IF SLAVE NOT IN LIB
\ LOADS SLAVE INTO WORKAREA
\ IF SLAVE IS NOT IN SVA

 LR 15,1
 CALL (15),(SWITCH,TECB,FIELDA,FIELDB,WORKAREA)
 .
 .
 EJO
 SAVE DS 9D
WORKAREA DS 2ððD SLAVE IS LOADED HERE
\ IF NOT IN SVA

 SWITCH DC XL1'ðð'
 TECB DS CL4
 FIELDA DS CL15
 FIELDB DS CL11
 END

SLAVE CSECT MUST BE SEPARATE ASSEMBLY
 SAVE (14,12)
 BALR 12,ð
 USING \,12
 USING WORKAREA,6
 LM 2,6,ð(1)
 MVC ð(15,4),DATA1
 MVC ð(11,5),DATA2
 CLI ð(2),X'FF'
 BE EXIT

SETIME 3,(3) SETIME ALTERS THE TECB
 WAIT (3)
 .
 .
 EXIT XI ð(2),X'FF'
 RETURN (14,12)
DATA1 DC CL15'THIS IS FIELDA'
DATA2 DC CL11'THIS IS FIELDB'

 LTORG
 WORKAREA DSECT
 FIELDC DS 3D
 FIELDD DS 3D
 END

Figure 77. Example of Conventions for SVA Coding

242 IBM VSE/ESA Guide to System Functions

 Understanding Syntax Diagrams

Appendix A. Understanding Syntax Diagrams

This section describes how to read the syntax diagrams in this manual.

To read a syntax diagram follow the path of the line. Read from left to right and top
to bottom.

� The 55─── symbol indicates the beginning of a syntax diagram.

� The ───5 symbol, at the end of a line, indicates that the syntax diagram
continues on the next line.

� The 5─── symbol, at the beginning of a line, indicates that a syntax diagram
continues from the previous line.

� The ───5% symbol indicates the end of a syntax diagram.

Syntax items (for example, a keyword or variable) may be:

� Directly on the line (required)

� Above the line (default)

� Below the line (optional)

Uppercase Letters
Uppercase letters denote the shortest possible abbreviation. If an item
appears entirely in uppercase letters, it can not be abbreviated.

You can type the item in uppercase letters, lowercase letters, or any
combination. For example:

55─ ─── ──KEYWOrd─ ───────────────────────────────────────5%

In this example, you can enter KEYWO, KEYWOR, or KEYWORD in
any combination of uppercase and lowercase letters.

Symbols You must code these symbols exactly as they appear in the syntax
diagram

* Asterisk

: Colon

, Comma

= Equal Sign

- Hyphen

// Double slash

() Parenthesis

. Period

+ Add

For example:

 \ $$ LST

 Copyright IBM Corp. 1984, 1999 243

 Understanding Syntax Diagrams

Variables Highlighted lowercase letters denote variable information that you
must substitute with specific information. For example:

55─ ──┬ ┬───────────────────────── ───────────────────────5%
 └ ┘─,──USER──=─ ─── ──user_id─

Here you must code USER= as shown and supply an ID for user_id.
You may, of course, enter USER in lowercase, but you must not
change it otherwise.

Repetition An arrow returning to the left means that the item can be repeated.

 ┌ ┐──────────
55─ ───6 ┴─repeat─ ──5%

A character within the arrow means you must separate repeated items
with that character.

 ┌ ┐─,──────
55─ ───6 ┴─repeat─ ──5%

A footnote (1) by the arrow references a limit that tells how many
times the item can be repeated.

 ┌ ┐──────────
55─ ───(1) ───6 ┴─repeat─ ───5%

Note:
1 Specify repeat up to 5 times.

Defaults Defaults are above the line. The system uses the default unless you
override it. You can override the default by coding an option from the
stack below the line. For example:

 ┌ ┐─A─
55─ ──┼ ┼─── ───5%
 ├ ┤─B─
 └ ┘─C─

In this example, A is the default. You can override A by choosing B or
C.

244 IBM VSE/ESA Guide to System Functions

 Understanding Syntax Diagrams

Required Choices
When two or more items are in a stack and one of them is on the line,
you must specify one item. For example:

55─ ──┬ ┬─A─ ───5%
 ├ ┤─B─
 └ ┘─C─

Here you must enter either A or B or C.

Optional Choice
When an item is below the line, the item is optional. Only one item
may be chosen. For example:

55─ ──┬ ┬─── ───5%
 ├ ┤─A─
 ├ ┤─B─
 └ ┘─C─

Here you may enter either A or B or C, or you may omit the field.

Required Blank Space
A required blank space is indicated as such in the notation. For
example:

 \ $$ EOJ

This indicates that at least one blank is required before and after the
characters $$.

 Appendix A. Understanding Syntax Diagrams 245

 Understanding Syntax Diagrams

246 IBM VSE/ESA Guide to System Functions

 Glossary

This glossary includes terms and definitions related
primarily to IBM VSE/ESA. If you do not find the term
you are looking for, refer to the index of this book or to
the IBM Dictionary of Computing New York: McGraw
Hill, 1994.

The glossary includes definitions with:

� Symbol * where there is a one-to-one copy from the
IBM Dictionary of Computing.

� Symbol (A) from the American National Dictionary
for Information Processing Systems, copyright 1982
by the Computer and Business Equipment
Manufacturers Association (CBEMA). Copies may
be purchased from the American National
Standards Institute, 1430 Broadway, New York,
New York 10018. Definitions are identified by the
symbol (A) after the definition.

� Symbols (I) or (T) from the ISO Vocabulary -
Information Processing and the ISO Vocabulary -
Office Machines, developed by the International
Organization for Standardization, Technical
Committee 97, Subcommittee 1. Definitions of
published segments of the vocabularies are
identified by the symbol (I) after the definition;
definitions from draft international standards, draft
proposals, and working papers in development by
the ISO/TC97/SC1 vocabulary subcommittee are
identified by the symbol (T) after the definition,
indicating final agreement has not yet been reached
among participating members.

access method . A program, that is, a set of
commands (macros), to define files or addresses and to
move data to and from them; for example VSE/VSAM
or VTAM.

* account file . A direct access file maintained by
VSE/POWER to hold the accounting information it
generates and the programs that it controls.

addressing mode (AMODE) . A program attribute that
refers to the address length that a program is prepared
to handle on entry. Addresses may be either 24 bits or
31 bits in length. In 24-bit addressing mode, the
processor treats all virtual addresses as 24-bit values;
in 31-bit addressing mode, the processor treats all
virtual addresses as 31-bit values. Programs with an
addressing mode of ANY can receive control in either
24-bit or 31-bit addressing mode.

address space . A range of up to two gigabytes of
contiguous virtual storage addresses that the system
creates for a user. Unlike a data space, an address
space contains user data and programs, as well as

system data and programs, some of which are common
to all address spaces. Instructions execute in an
address space (not a data space). Contrast with data
space.

* alternate tape . A tape drive to which the operating
system switches automatically for tape read or write
operations if the end of the volume has been reached
on the originally used tape drive.

* appendage routine . Code physically located in a
program or subsystem, but logically an extension of a
VSE supervisor routine.

* application program . A program written for or by a
user that applies directly to the user's work, such as a
program that does inventory control or payroll. See
also batch program and online application program.

ASI (automated system initialization) procedure . A
set of control statements which specifies values for an
automatic system initialization.

* assemble . To translate an assembly language
program into an object program. (T)

* assembler . A computer program that converts
assembly language instructions into object code.

assembler language . A programming language
whose instructions are usually in one-to-one
correspondence with machine instructions and allows to
write macros.

attention routine (AR) . A routine of the system that
receives control when the operator presses the
Attention key. The routine sets up the console for the
input of a command, reads the command, and initiates
the system service requested by the command.

autolink . An automatic library look-up function of the
linkage editor. The function a) resolves any external
reference that is included in the currently processed
module and b) searches the active phase-search chain
for an object module of the same name as the
encountered external reference.

* automated system initialization (ASI) . A function
that allows control information for system startup to be
cataloged for automatic retrieval during system startup.

* autostart . A facility that starts up VSE/POWER with
little or no operator involvement.

* auxiliary storage . All addressable storage, other
than main storage, that can be accessed by means of
an input/ouput channel; for example storage on

 Copyright IBM Corp. 1984, 1999 247

magnetic tape or direct access devices. Synonymous
with external storage.

background partition . An area of virtual storage in
which programs are executed under control of the
system. By default, the partition has a processing
priority lower than any of the existing foreground
partitions.

backup copy . A copy, usually of a file or a library
member, that is kept in case the original file or library
member is unintentionally changed or destroyed.

batch program . A program that is processed in series
with other programs and therefore normally processes
data without user interaction.

block . Usually, a block consists of several records of a
file that are transmitted as a unit. But if records are very
large, a block can also be part of a record only. On an
FBA disk, a block is a string of 512 bytes of data. See
also control block.

B-transient . A phase with a name beginning with $$B
and running in the Logical Transient Area (LTA). Such a
phase is activated by special supervisor calls.

* catalog . 1. A directory of files and libraries, with
reference to their locations. A catalog may contain
other information such as the types of devices in which
the files are stored, passwords, blocking factors. (I) (A)
2. To store a library member such as a phase, module,
or book in a sublibrary.

See also VSAM master catalog, VSAM user catalog.

* cataloged procedure . A set of control statements
placed in a library and retrievable by name.

* chaining . A logical connection of sublibraries to be
searched by the system for members of the same type;
for example, phase or object modules.

* channel program . One or more channel command
words that control a sequence of data channel
operations. Execution of this sequence is initiated by a
single start I/O (SIO) instruction.

* checkpoint . 1. A point at which information about
the status of a job and the system can be recorded so
that the job step can be restarted later. 2. To record
such information.

CKD device . Count-key-data device.

* compile . To translate a source program into an
executable program (an object program). See also
assembler.

compiler . A program used to compile.

conditional job control . The capability of the job
control program to process or to skip one or more
statements based on a condition that is tested by the
program.

* configuration . The devices and programs that make
up a system, subsystem, or network.

connect . To authorize library access on the lowest
level. A modifier such as "read" or "write" is required for
the specified use of a sublibrary.

control block . An area within a program or a routine
defined for the purpose of storing and maintaining
control information.

* control interval (CI) . A fixed-length area of disk
storage where VSE/VSAM stores records and
distributes free space. It is the unit of information that
VSE/VSAM transfers to or from disk storage. For FBA,
it must be an integral multiple, to be defined at cluster
definition, of the block size.

control program . A program to schedule and
supervise the running of programs in a system.

DASD sharing . An option that lets independent
computer systems use common data on shared disk
devices.

data file . See file.

* data management . A major function of the operating
system. It involves organizing, storing, locating, and
retrieving data.

data processing system . Synonym for computer
system.

data security . See access control.

data set . See file.

data space . A range of up to two gigabytes of
contiguous virtual storage addresses that a program
can directly manipulate through ESA/370 instructions.
Unlike an address space, a data space can hold only
user data; it does not contain shared areas, system
data or programs. Instructions do not execute in a data
space, although a program can reside in a data space
as non-executable code. Contrast with address space.

default value . A value assumed by the program when
no value has been specified by the user.

* device address . 1. The identification of an
input/output device by its channel and unit number. 2. In
data communication, the identification of any device to
which data can be sent or from which data can be
received.

248 IBM VSE/ESA Guide to System Functions

* device class . The generic name for a group of
device types; for example, all display stations belong to
the same device class. Contrast with device type.

* dialog . 1. In an interactive system, a series of
related inquiries and responses similar to a
conversation between two people. 2. For VSE/ESA, a
set of panels that can be used to complete a specific
task; for example, defining a file.

direct access . Accessing data on a storage device
using their address and not their sequence. This is the
typical access on disk devices as opposed to magnetic
tapes. Contrast with sequential access.

directory . 1. A table of identifiers and references to
the corresponding items of data. (I) (A) 2. In VSE,
specifically, the index for the program libraries. See
also library directory and sublibrary directory.

disk operating system residence volume
(DOSRES). The disk volume on which the system
sublibrary IJSYSRS.SYSLIB is located including the
programs and procedures required for system startup.

display station . A display screen with attached
keyboard for communication with the system or a
network. See also terminal.

* distribution tape . A magnetic tape that contains, for
example, a preconfigured operating system like
VSE/ESA. This tape is shipped to the customer for
program installation.

DOSRES. Disk operating system residence volume.

* dump . 1. Data that has been dumped. (T) 2. To
record, at a particular instant, the contents of all or part
of one storage device in another storage device.
Dumping is usually for the purpose of debugging. (T)

dynamic class table . Defines the characteristics of
dynamic partitions.

dynamic partition . A partition created and activated
on an 'as needed' basis that does not use fixed static
allocations. After processing, the occupied space is
released. Contrast with static partition.

Enterprise Systems Architecture (ESA) . See
ESA/390.

ESA/390. IBM Enterprise Systems Architecture/390.
The latest extension to the IBM System/370 architecture
which includes the advanced addressability feature and
advanced channel architecture.

extent . Continuous space on a disk or diskette
occupied by or reserved for a particular file or VSAM
data space.

external storage . Storage that is not part of the
processor.

fast service upgrade (FSU) . A service function of
VSE/ESA for the installation of a refresh release without
regenerating control information such as library control
tables.

FBA disk device . Fixed-block architecture disk device.

* file . A named set of records stored or processed as
a unit. (T) Synonymous with data set.

* foreground partition . A space in virtual storage in
which programs are executed under control of the
system. By default, a foreground partition has a higher
processing priority than the background partition.

* forms control buffer (FCB) . In the 3800 Printing
Subsystem, a buffer for controlling the vertical format of
printed output.

* fragmentation (of storage) . In virtual system,
inability to assign real storage locations to virtual
storage addresses because the available spaces are
smaller than the page size.

* generate . To produce a computer program by
selecting subsets of skeletal code under the control of
parameters. (A)

* GETVIS space . Storage space within a partition or
the shared virtual area, available for dynamic allocation
to programs.

guest system . A data processing system that runs
under control of another (host) system.

hardcopy file . A system file on disk, used to log all
lines of communication between the system and the
operator at the system console, to be printed on
request.

* hardware . All or part of the physical components of
an information processing system, such as computers
or peripheral devices. (T) (A) Contrast with software.

* initial program load (IPL) . The process of loading
system programs and preparing the system to run jobs.

interactive . A characteristic of a program or system
that alternately accepts input and then responds. An
interactive system is conversational, that is, a
continuous dialog exists between user and system.
Contrast with batch.

interactive interface . A system facility which controls
how different users see and work with the system by
means of user profiles. When signing on, the interactive
interface makes available those parts of the system
authorized by the profile. The interactive interface has

 Glossary 249

sets of selection- and data-entry panels through which
users communicate with the system.

interactive partition . An area of virtual storage for the
purpose of processing a job that was submitted
interactively via VSE/ICCF.

interface . A shared boundary between two hardware
or software units, defined by common functional or
physical characteristics. It might be a hardware
component or a portion of storage or registers accessed
by several computer programs.

job accounting . A system function that lists how much
every job step uses of the different system resources.

* job accounting interface . A function that
accumulates accounting information for each job step
that can be used for charging usage of the system,
planning new applications, and supervising system
operation more efficiently.

* job accounting table . An area in the supervisor
where accounting information is accumulated for the
user.

* job catalog . A catalog made available for a job by
means of the filename IJSYSUC in the respective DLBL
job control statement.

job control statement . A particular statement of JCL.

job step . One of a group of related programs
complete with the JCL statements necessary for a
particular run. Every job step is identified in the job
stream by an EXEC statement under one JOB
statement for the whole job.

job stream . The sequence of jobs as submitted to an
operating system.

label information area . An area on a disk to store
label information read from job control statements or
commands. Synonymous with label area.

* language translator . A general term for any
assembler, compiler, or other routine that accepts
statements in one language and produces equivalent
statements in another language.

* librarian . The set of programs that maintains,
services, and organizes the system and private libraries.

library . See VSE library and VSE/ICCF library.

* library block . A block of data stored in a sublibrary.

* library directory . The index that enables the system
to locate a certain sublibrary of the accessed library.

* library member . The smallest unit of data that can
be stored in and retrieved from a sublibrary.

* licensed program . A separately priced program and
its associated materials that bear an IBM copyright and
are offered to customers under the terms and conditions
of the IBM Customer Agreement (ICA).

* linkage editor . A program used to create a phase
(executable code) from one or more independently
translated object modules, from one or more existing
phases, or from both. In creating the phase, the linkage
editor resolves cross references among the modules
and phases available as input. The program can catalog
the newly built phases.

link-edit . To create a loadable computer program by
having the linkage editor process compiled (assembled)
source programs.

* lock file . In a shared disk environment under VSE, a
system file on disk used by the sharing systems to
control their access to shared data.

* logging . The recording of data about specific events.

logical record . A user record, normally pertaining to a
single subject and processed by data management as a
unit. Contrast with physical record which may be larger
or smaller.

* logical unit name . In programming, a name used to
represent the address of an input/output unit.

* main task . The main program within a partition in a
multiprogramming environment.

* maintain system history program (MSHP) . A
program used for automating and controlling various
installation, tailoring, and service activities for a VSE
system.

* member . The smallest unit of data that can be
stored in and retrieved from a sublibrary. See also
library member.

message . 1. In VSE, a communication sent from a
program to the operator or user. It can appear on a
console, a display terminal or on a printout. 2. In
telecommunication, a logical set of data being
transmitted from one node to another.

* migrate . To move to a changed operating
environment, usually to a new release or version of a
system.

* module . A program unit that is discrete and
identifiable with respect to compiling, combining with
other units, and loading; for example, the input to, or
output from an assembler, compiler, linkage editor, or
executive routine. (A)

250 IBM VSE/ESA Guide to System Functions

* multiprogramming . 1. A mode of operation that
provides for interleaved execution of two or more
computer programs by a single processor. (I) (A) 2.
Pertaining to concurrent execution of of two or more
computer programs by a computer. (A)

multitasking . Concurrent running of one main task
and one or several subtasks in the same partition.

network . 1. An arrangement of nodes (data stations)
and connecting branches. 2. The assembly of
equipment through which connections are made
between data stations.

* object code . Output from a compiler or assembler
which is itself executable machine code or is suitable
for processing to produce executable machine code. (A)

object module (program) . A program unit that is the
output of an assembler or compiler and is input to a
linkage editor.

online application program . An interactive program
used at display stations. When active, it waits for data.
Once input arrives, it processes it and sends a
response to the display station or to another device.

optional program . An IBM licensed program that a
user can install on VSE by way of available
installation-assist support.

page data set (PDS) . One or more extents of disk
storage in which pages are stored when they are not
needed in processor storage.

page fault . A program interruption that occurs when a
program page marked "not in processor storage" is
referred to by an active page.

* page fixing . Marking a page so that it is held in
processor storage until explicitly released. Until then, it
cannot be paged out.

page frame . An area of processor storage that can
contain a page.

page-in . The process of transferring a page from the
PDS to processor storage.

* page I/O . Page-in and page-out operations.

page-out . The process of transferring a page from
processor storage to the PDS.

* page pool . The set of page frames available for
paging virtual-mode programs.

partition . A division of the virtual address area
available for running programs. See also dynamic
partition, static partition.

* physical record . The amount of data transferred to
or from auxiliary storage. Synonymous with block.

priority . A rank assigned to a partition or a task that
determines its precedence in receiving system
resources.

private area . The part of an address space that is
available for the allocation of private partitions. Its
maximum size can be defined during IPL. Contrast with
shared area.

* private library . A user-owned library that is separate
and distinct from the system library.

* private partition . Any of the system's partitions that
are not defined as shared. See also shared partition.

procedure . See cataloged procedure.

* processing . The performance of logical operations
and calculations on data, including the temporary
retention of data in processor storage while this data is
being operated upon.

* processor . In a computer, a functional unit that
interprets and executes instructions. A processor
consists of at least an instruction control unit and an
arithmetic and logic unit. (T)

processor storage . The storage contained in one or
more processors and available for running machine
instructions. Synonymous with real storage.

profile . A description of the characteristics of a user or
a computer resource.

* programmer logical unit . A logical unit available
primarily for user-written programs. See also logical unit
name.

* queue file . A direct access file maintained by
VSE/POWER that holds control information for the
spooling of job input and job output.

real address . The address of a location in processor
storage.

* real address area . The area of virtual storage where
virtual addresses are equal to real addresses.

real mode . A processing mode in which a program
may not be paged. Contrast with virtual mode.

real storage . See processor storage.

record . A set of related data or words, treated as a
unit. See logical record, physical record.

 Glossary 251

* reentrant . The attribute of a program or routine that
allows the same copy of the program or routine to be
used concurrently by several tasks.

residency mode (RMODE) . A program attribute that
refers to the location where a program is expected to
reside in virtual storage. RMODE 24 indicates that the
program must reside in the 24-bit addressable area
(below 16 megabytes), RMODE ANY indicates that the
program can reside anywhere in 31-bit addressable
storage (above or below 16 megabytes).

* restore . To write back onto disk data that was
previously written from disk onto an intermediate
storage medium such as tape.

* routine . A program, or part of a program, that may
have some general or frequent use. (T)

schedule . To select a program or task for getting
control over the processor.

* search chain . The order in which chained
sublibraries are searched for the retrieval of a certain
library member of a specified type.

sequential access . The serial retrieval of records in
their entry sequence or serial storage of records with or
without a premeditated order. Contrast with direct
access.

* sequential file . A file in which records are processed
in the order in which they are entered and stored.

* service program . A computer program that performs
functions in support of the system. Synonymous with
utility program.

shared area . An area of storage that is common to all
address spaces in the system. VSE/ESA has two
shared areas:

1. The shared area (24 bit) is allocated at the start of
the address space and contains the supervisor, the
SVA (for system programs and the system GETVIS
area), and the shared partitions.

2. The shared area (31 bit) is allocated at the end of
the address space and contains the SVA (31 bit) for
system programs and the system GETVIS area.

* shared partition . A partition allocated for a program
such as VSE/POWER that provides services for and
communicates with programs in other partitions of the
system's virtual address spaces.

* shared spooling . A function that permits the
VSE/POWER account file, data file, and queue file to be
shared among several computer systems with
VSE/POWER.

* shared virtual area (SVA) . A high address area that
contains a system directory list (SDL) of frequently used
phases, resident programs that can be shared between
partitions, and an area for system support.

* skeleton . A set of control statements, instructions, or
both, that requires user-specific information to be
inserted before it can be submitted for processing.

* software . All or part of the programs, procedures,
rules, and associated documentation of a data
processing system. Software is an intellectual creation
that is independent of the medium on which it is
recorded. (T)

source member . A library member containing source
statements in any of the programming languages
supported by VSE.

* source program . A program that a particular
translator can accept. (T) Contrast with object module.

* source statement . A statement written in symbols of
a programming language.

* spool access support . A function of VSE/POWER
that allows user programs or subsystems running on
VSE system to access the spool files of VSE/POWER.

* spooling . The use of disk storage as buffer storage
to reduce processing delays when transferring data
between peripheral equipment and the processors of a
computer. In VSE, this is done under the control of
VSE/POWER.

* standard label . A fixed-format record that identifies a
volume of data such as a tape reel or a file that is part
of a volume of data.

startup . The process of performing IPL of the
operating system and of getting all subsystems and
application programs ready for operation.

static partition . A partition, defined at IPL time and
occupying a defined amount of virtual storage that
remains constant. Contrast with dynamic partition.

storage dump . See dump.

sublibrary . A subdivision of a library. Members can
only be accessed in a sublibrary.

sublibrary directory . An index for the system to
locate a member in the accessed sublibrary.

submit . A VSE/POWER function that passes a job to
the system for processing.

* subsystem . A secondary or subordinate system,
usually capable of operating independently of, or
asynchronously with, a controlling system. (T)

252 IBM VSE/ESA Guide to System Functions

subtask . A task that is initiated by the main task or by
another subtask.

* supervisor . The part of a control program that
coordinates the use of resources and maintains the flow
of processor operations.

SYSRES. System residence file.

* system console . A console, usually equipped with a
keyboard and display screen for control and
communication with the system.

system directory list (SDL) . A list containing directory
entries of frequently-used phases and of all phases
resident in the SVA. The list resides in the SVA.

* system file . A file used by the operating system, for
example, the hardcopy file, the recorder file, the page
data set.

system logical unit . A logical unit available primarily
for operating system use. See also logical unit name.

* system recorder file . The file used to record
hardware reliability data. Synonymous with recorder file.

system residence file (SYSRES) . The system
sublibrary IJSYSRS.SYSLIB that contains the operating
system. It is stored on the system residence volume
DOSRES.

system sublibrary . The sublibrary that contains the
operating system. It is stored on the system residence
volume (DOSRES).

* tailor . A process that defines or modifies the
characteristics of the system.

* telecommunication . Transmission of data between
computer systems over telecommunication lines and
between a computer system and remote devices.

* terminal . A point in a system or network at which
data can either enter or leave. (A) Usually a display
screen with a keyboard.

* throughput . 1. A measure of the amount of work
performed by a computer system over a given period of
time, for example, number of jobs per day. (I) (A) 2. In
data communication, the total traffic between stations
per unit of time.

* track hold . A function that protects a track that is
being updated by one program from being accessed by
another program.

* transient area . An area within the control program
used to provide high-priority system services on
demand.

unattended node support . A set of functions allowing
one or more VSE systems to run without an operator
being present. The systems are connected to a single
central host.

* universal character set (UCS) . A printer feature that
permits the use of a variety of character arrays.

universal character set buffer (UCB) . A buffer to
hold UCS information.

* user exit . A programming service provided by an
IBM software product that may be requested during the
execution of an application program for the service of
transferring control back to the application program
upon the later occurrence of a user-specified event.

* utility program . 1. A computer program in general
support of computer processes; for example, a
diagnostic program, a trace program, or a sort program.
(T) Synonymous with service program. 2. A program
designed to perform an everyday task such as copying
data from one storage device to another. (A)

virtual address . An address that refers to a location in
virtual storage. It is translated by the system to a
processor storage address when the information stored
at the virtual address is to be used.

* virtual address space . A subdivision of the virtual
address area available to the user for the allocation of
private, nonshared partitions.

* virtual I/O area (VIO) . An extension of the page data
set used by the system as intermediate storage,
primarily for control data.

* virtual machine (VM) . A functional simulation of a
computer system and its associated devices.

Virtual Machine/Enterprise Systems Architecture
(VM/ESA). The most advanced VM system currently
available.

* virtual mode . The operating mode of a program
which may be paged.

virtual storage . Addressable space image for the user
from which instructions and data are mapped into
processor (real) storage locations.

VM/ESA. Virtual Machine/Enterprise Systems
Architecture.

volume . A data carrier that is mounted and
demounted as a unit, for example, a reel of tape or a
disk pack. (I) Some disk units have no demountable
packs. In that case, a volume is the portion available to
one read/write mechanism.

 Glossary 253

volume ID . The volume serial number, which is a
number in a volume label assigned when a volume is
prepared for use by the system.

VSE (Virtual Storage Extended) . A system that
consists of a basic operating system and any IBM
supplied and user-written programs required to meet the
data processing needs of a user. VSE and the
hardware it controls form a complete computing system.
Its current version is called VSE/ESA.

VSE/ESA (VSE/Enterprise Systems Architecture) .
The most advanced VSE system currently available.

VSE/ICCF (VSE/Interactive Computing and Control
Facility) . An IBM program that serves as interface, on
a time-slice basis, to authorized users of terminals
linked to the system's processor.

VSE/ICCF library . A file composed of smaller files
(libraries) including system and user data which can be
accessed under the control of VSE/ICCF.

VSE library . A collection of programs in various forms
and storage dumps stored on disk. The form of a
program is indicated by its member type such as source
code, object module, phase, or procedure. A VSE
library consists of at least one sublibrary which can
contain any type of member.

VSE/POWER. An IBM program primarily used to spool
input and output. The program's networking functions
enable a VSE system to exchange files with or run jobs
on another remote processor.

VSE/VSAM (VSE/Virtual Storage Access Method) .
An IBM access method for direct or sequential
processing of fixed and variable length records on disk
devices.

31-bit addressing . Provides addressability for address
spaces of up to 2 gigabytes. (The maximum amount of
addressable storage in previous systems was 16
megabytes).

254 IBM VSE/ESA Guide to System Functions

 Index

Special Characters
/& statement 47
$$A$CDL0 25
$ABEND 81
$ASIPROC master procedure 21
$CANCEL 81
$COMVAR procedure 226
$EOJ 79
$SVAASMA 33
$SVACICS 33
$SVAREXX 33
$SVAVTAM 33
$SYSOPEN phase 37

Numerics
31-bit addressing 181, 196
3800 printing subsystem 64

A
ABEND condition 81
access method 54
accessing files 48
address space layout 5

real address space 6
virtual address space 6

ALLOC command 15
application program interface (API), Librarian 97
application program, access to libraries 159
ASI

See automated system initialization (ASI)
assembler 174
assembling programs 64
assembly 52
ASSGN command 40, 50
ASSGN statement 48
automated system initialization (ASI)

IPL procedure 18
JCL procedure 19
master procedure $ASIPROC 21
overriding 21
overview 17
partition bring-up 19, 20
TYPE command 23
TYPE operand 22

B
background partitions 19
BACKUP command 112

BG partition 219
block size 54
books 182
buffer load 63

C
calling procedures 84
CANCEL condition 81
carriage control character 76
CATAL operand (OPTION statement) 181
CATALOG a member command 119
CATALOG command 123
cataloged procedures 83, 100
cataloging multiple object modules 123, 183
cataloging phases 185
CDLOAD macro 10, 196
CHANGE command 125
checkpointing facility 223
CHKPT macro 223
CISIZE 54
CLASSTD option 20, 63
CLASSTD, label information 60
CLOSE (LIBRM macro option) 160
CLOSE command 75
command symbols 243
communication device list (CDL) 25
communication device, for IPL 24
COMPARE command 125
compile, link and go 188
compiling programs 64
conditional job control 76
control interval (FBA) 54
controlling jobs 39
conventions, command 243
COPY command 126
creation date 57

D
DASD sharing 226
data area 54, 59
DATA operand (CATALOG) 83
data secured file 54
default value 88
DEFINE command 98, 102
DELETE (LIBRM macro option) 159
DELETE command 130
device assignment 40
device assignment, permanent 50
device assignment, shared 51

 Copyright IBM Corp. 1984, 1999 255

device assignment, temporary 50
device class 40
device class assignment 53
device sensing (IPL) 22
device type 40
device type assignment 53
direct access files 57
disk extent 49
disk labels 54
diskette labels 58
display storage layout dialog 10
DLBL statement 42, 54, 58
DOSRES 98
dump library 101
DUMP macro 77
dump options 67
dumps 101
duplicate phase names 190
dynamic partition 6
dynamic space GETVIS area 11

E
E-Deck library exit, High Level Assembler 174
end-of-job processing 47
end-of-job statement 47
EOJ macro 77
ESERV program 173
example

conventions for SVA coding 242
for changing the PASIZE 31
for changing the VSIZE 32
IPL exit routine 209
IPL procedures for a DASD sharing

environment 233
JCL exit routine 210
OPEN/GET/CLOSE request, Librarian API 169
partition allocations 8
PFIX and PFREE macro example 239
STATE member request, Librarian API 162

EXEC PROC statement 84, 87
EXEC statement 45
executing programs 64
execution mode 69
exit

abnormal termination 208
E-Deck processing, High Level Assembler 174
interval timer 208
IPL, system startup 209
job accounting 221
job control, system startup 210
operator communications 208
page fault handling overlap 209
program check 208

exit routine 37

expiration date 54, 59
extent 49
EXTENT statement 42, 54, 58
extent, size of 55

F
FETCH macro 181, 198
file labels 54
file labels, processing of 42
file name 44, 54, 57, 59
file organization 55
file sequence number 58
file-ID 54, 57, 59
files, accessing 48
files, relating them to programs 39
fixing pages 16
foreground partitions 20
forms control buffer (FCB) 63
FREEVIS macro 70

G
GET (LIBRM macro option) 159
GETSYMB macro 219
GETVIS area 71
GETVIS areas 10
GETVIS macro 70
global condition 80
GO operand (EXEC statement) 188
GOTO statement 79

H
High Level Assembler 174
High Level Assembler, library exit for processing

E-Decks 174

I
I/O assignments 40
I/O devices, assigning 48
I/O spooling 73
IBM 3800 printing subsystem 64
ID statement 45
IF statement 78
IGNLOCK job control option 142
IJSYSIN 74, 75
IJSYSLS 74, 75
IJSYSPH 74, 75
IJSYSRS.SYSLIB 98
index area 54
initial program load (IPL)

overview 17
inline data 83, 101
INPUT command 131

256 IBM VSE/ESA Guide to System Functions

integrated console 27
interrupting IPL processing 26
interrupting job stream 48
interval timer 226
IOCS 56, 57
IPL

See initial program load (IPL)
IPL communication device 24
IPL communication device list 25
IPL exit routine 209
IPL load parameter 27
IPL procedure, contents 18
IPL processing, interrupt 26

J
JCL exit routine 210
JCL procedure, contents 19
JCLEXIT command 219
job accounting interface routine 221
job control 39

cataloged procedures 83
commands, entering 39
conditional 46, 76
defining a job 45
device assignments 48
end-of-job statement (/&) 47
for program control 68
JOB statement 46
job streams 47
label information 54
language 45
loading 39
logging 67
nested procedures 91
processing a program 64
program 39
symbolic parameters 87

job definition 45
job mix 48
JOB statement 45, 46
job step 45
job stream 47
job-to-job transition 47
job, defining a 45

L
label areas 59
label checking 44, 59
label information 54

adding 61
deleting 61
search order 61

label information area 44

label options 44
label statement 79
labels 42
language translator 182
LIBDEF (LIBRM macro option) 159
LIBDROP (LIBRM macro option) 159
Librarian API, application program interface 97
librarian commands 112

BACKUP 112
CATALOG 119
CHANGE 125
COMPARE 125
conditional command execution 110
COPY 126
DEFINE 102
DELETE 130
generic notation 111
INPUT 131
interactive execution 111
LIST 131
LISTDIR 131
LOCK 141
merge 129
MOVE 126
PUNCH 144
RELEASE 145
RENAME 146
RESTORE 148
SEARCH 154
TEST 157
UNLOCK 157
UPDATE 157

Librarian program 109
Librarian return codes 109
Librarian time stamp 154
libraries

catalog members 105
define library access (LIBDEF) 105
defining 98
display library access (LIBLIST) 108
overview 98
private 98
private, non-VSAM managed space 102
private, VSAM-managed space 102
reset library access (LIBDROP) 108
system 98
time stamp control 154
using 97

library access for application programs
example of a STATE member request 162
example of an OPEN/GET/CLOSE request 169
LIBRDCB macro 159
LIBRM macro 159

library exit, High Level Assembler 174
library members 99

 Index 257

LIBRDCB macro 159
LIBRM macro 159
link and go 187
LINK operand (OPTION statement) 181
linkage editor 100, 181

AUTOLINK function 194
cataloging phases 185
compile, link-edit, and execute 188
FETCH macro 198
header line 185
how external references are resolved 200
link-edit and execute 187
LOAD macro 198
overlay programs 196
preparing the input 189
processing requirements 189
samples 202
specifying helps 195
storage requirements 194

Linkage Editor error handling 188
Linkage Editor, assignments for 189
Linkage Editor, LIBDEFs for 189
linking programs 64, 181

object modules 183
phases 184
source books 182

LIOCS 56, 57
LIST command 131
list of JCL exit routines 217
list options 68
LISTDIR command 131
load list 34
LOAD macro 181, 198
load parameter facility 28
loading phases 181
loading phases into the SVA 32
LOCK a member command 141
lock file 229
locking library members 142
logical IOCS 56, 57
logical units 40, 49

M
macros

CDLOAD 196
CHKPT 223
DUMP 77
editing 173
EOJ 77
FETCH 181, 198
FREEVIS 70
GETSYMB 220
GETVIS 70
LOAD 181, 198
PFIX 16

macros (continued)
PFREE 16
source format 182
SVALLIST 35

magnetic tape control 62
MAP command 10
member types, library members 99
members

cataloging 100
DUMP type 101
MSHP controlled 108
OBJ type 100, 183
PHASE type 100
PHASE-type 67
PROC type 100
PROC, cataloging 83
renaming 101
SOURCE type 99
SOURCE types 182
user type 101

merging sublibraries 129
modules 182
MOVE command 126
MSHP controlled members 108
MTC command 62
multi-step procedures 85
multiphase program 190
multiple JCL exit routines 216
multiple object modules 183

N
nested procedures 91
nesting levels 91
notations, command 243
NOTE (LIBRM macro option) 159

O
object module 64
object modules 100, 182, 183
ON conditions, default 78
ON statement 77
OPEN (LIBRM macro option) 159
OPTION CATAL 181
OPTION CLASSTD command 60
OPTION LINK 181
OPTION PARSTD command 60
OPTION statement 44, 67
OPTION STDLABEL command 60
OPTION USRLABEL command 59
overflow area 54
overlay programs 196

258 IBM VSE/ESA Guide to System Functions

P
page 1
page data set 1, 3
page fixing 16
page frame 1
page management 2
page out 3
page pool 1
paging 2
PARM parameter 69
PARSTD, label information 60
partition allocation 8
partition GETVIS area 11
partition-related procedures 84
partitions

allocation 8
GETVIS area 71
layout 8
processor storage 69
real allocation 15
real GETVIS area 69
real storage allocation 15
standard label subarea 59
starting (ASI) 19, 20
temporary label subarea 59

PASIZE 6
passing parameters 69, 89
PAUSE command 48
PAUSE statement 48
permanent assignment 50
PFIX limits 13
PFIX macro 16
PFREE macro 16
phase 64
PHASE statement (Linkage Editor) 184, 190
phases 100, 182, 184

duplicate 190
loading in SVA 186
naming 190
non-relocatable 184
re-enterable 184
relocatable 184
self-relocating 184
SVA-eligible 184
testing 187

phases, cataloging 67
phases, loading of 100, 181
phases, storing of 181
physical unit 40
POINT (LIBRM macro option) 160
print buffers 63
printer, controlling 63
priority 48
private libraries 98

private sublibraries 98
PROC statement 87
procedure nesting 91
procedures 100
procedures, calling 84
procedures, partition-related 84
processor storage allocation 15
program switches 68
programmer logical units 49
programs

assembling 64
cataloged 67
compiling 64
designing for virtual mode execution 235
executing 64, 67
linking 64

programs, structure of 182
pseudo register support 198
PUNCH command 144
PUT (LIBRM macro option) 159

R
real execution, need for 70
real GETVIS area, defining 70
real mode, executing programs 69
real mode, program execution 15
real storage, defining 13
real storage, layout 14
record format, system files 76
register conventions, return code 77
RELEASE command 145
RENAME (LIBRM macro option) 159
RENAME command 101, 146
renaming members 101
replacing SVA phases 36
REQTEXT

cataloging 183
enhanced object module support 183
enhanced support 183
in register 15 220
including parts 184

RESTORE command 148
retention period 57
return codes 76
return codes from Librarian 109
rewind 62
rotational position sensing 71
RSIZE 6

S
SDL (system directory list) 32
SDL entries 36
SEARCH for member command 154

 Index 259

selective restore 117
sequential files 55
SET SDL command 36
SET ZONEBDY command 18
SET ZONEDEF command 18
SETDF command 64
SETPARM statement 78, 87, 88
SETPFIX command 13
SETPRT command 64
shared device assignment 51
shared virtual area (SVA), loading phases into 32
shared virtual area, size of 35
SIZE command 71
SIZE operand (EXEC) 70, 71
SIZE parameter/command 8
SIZE=phasename (EXEC) 190
SKCOMVAR skeleton 226
SKEDECKX skeleton, High Level Assembler 174
skipping statements 79
source books 99, 182
source program 64
source statements 182
SOURCE type members 99
spooling 73
stacker selection character 76
starting the system 17
startup 17

See also system startup
STATE (LIBRM macro option) 159
STDLABEL, label information 60
STDOPT statement 68
STOP processing (IPL) 30
stoplist (IPL) 21
storage layout

address space layout 5
dynamic address space and GETVIS areas 13
real address space 6
real storage 14
static address space and GETVIS areas 12
virtual address spaces 6

storage management 1
address space layout 5
defining real storage 13
dynamic address space and GETVIS areas 13
page management 2
partition allocation 8
real storage layout 14
static address space and GETVIS areas 12
virtual storage concept 1

storing phases 181
STXIT macro 207
sublibraries

accessing 111
chaining 98
concatenation 98
members 99

sublibraries (continued)
private 98
system 98

support of named common areas 200
SVA command, IPL 35
SVA load list 34
SVA, load single phase 34
SVA, loading phases 186
SVA, loading phases into 32
SVA, PFIX a phase 192
SVALLIST macro 35
symbolic parameters 87

assigning values to 87, 88
concatenating 89
default value 88
defining 87, 88
nullifying 87
passing 89
rules 88
setting 78
substitution 78
values 78

syntax symbols 243
syntax, of commands 243
SYSBUFLD program 63
SYSDUMP library 101
SYSIN 73, 74, 75
SYSIN, assigning 50
SYSIPT 73
SYSIPT data 83
SYSLNK 189
SYSLOG 39
SYSLOG, defining 24
SYSLST 73
SYSLST on tape 73
SYSOUT 74, 75
SYSOUT, assigning 50
SYSPCH 73
SYSPCH on tape 73
SYSRDR 39, 73
SYSRES file, restore stand-alone 152
system console device list 25
system directory list (SDL) 32
system GETVIS area 11, 71
system library 98
system logical units 49
system standard subarea 59
system startup 17

ASI IPL procedure 18
ASI JCL procedure 19
communication device for IPL 24
communication device list (CDL) 25
interrupt IPL processing 26
IPL exit routine 209
JCL exit routine 210
master procedure $ASIPROC 21

260 IBM VSE/ESA Guide to System Functions

system startup (continued)
modify IPL parameters 29
multiple JCL exit routines 216
shared virtual area (SVA), loading phases into 32
STOP processing (IPL) 30
SYSLOG 24
system directory list (SDL) 32
user-defined processing 37

system sublibrary 98

T
tape control 62
tape labels 57
tape positioning 117
tape, system input 73
tapemarks, writing 62
telecommunication systems 25
temporary assignment 50
TEST command 157
testing phases 187
testing return codes 77
time stamp control, libraries 154
time-dependent programs 15
time-of-day clock 225
timer services 225
TLBL statement 44, 57
TYPE command (IPL) 23

U
universal character-set buffer (UCB) 63
UNLOCK a member command 157
UPDATE command 157
updating macros 182
UPSI byte 68
USRLABEL, label information 59

V
version number for files 58
VIO area 187
virtual I/O area 187
virtual machine 23
virtual mode, executing programs 69
virtual mode, program execution 15
virtual storage

address translation 3
loading programs in 2
map 10
overview 1
paging 2
size of 1

virtual storage map 10
volume 42

volume sequence number 58
volume serial number 54, 57, 59
VSE/ESA

processor (real) storage 1
virtual storage concept 1

VSE/POWER 73

Y
Year 2000 support

librarian 101
linkage editor 185

 Index 261

Communicating Your Comments to IBM

IBM VSE/Enterprise Systems Architecture
Guide to System Functions
Version 2 Release 4

Publication No. SC33-6711-00

If you especially like or dislike anything about this book, please use one of the methods
listed below to send your comments to IBM. Whichever method you choose, make sure you
send your name, address, and telephone number if you would like a reply.

Feel free to comment on specific errors or omissions, accuracy, organization, subject matter,
or completeness of the book. However, the comments you send should pertain to only the
information in this manual and the way in which the information is presented. To request
additional publications, or to ask questions or make comments about the functions of IBM
products or systems, you should talk to your IBM representative or to your IBM authorized
remarketer.

When you send comments to IBM, you grant IBM a nonexclusive right to use or distribute
your comments in any way it believes appropriate without incurring any obligation to you.

If you are mailing a readers' comment form (RCF) from a country other than the United
States, you can give the RCF to the local IBM branch office or IBM representative for
postage-paid mailing.

� If you prefer to send comments by mail, use the RCF form and either send it
postage-paid in the United States, or directly to:

IBM Deutschland Entwicklung GmbH
Department 3248
Schoenaicher Strasse 220
D-71032 Boeblingen
Federal Republic of Germany

� If you prefer to send comments by FAX, use this number:

 – (Germany): 07031-16-3456
– (Other countries): (+49)+7031-16-3456

� If you prefer to send comments electronically, use this network ID:

IBM Mail Exchange: DEIBMBM9 at IBMMAIL

INTERNET: s390id@de.ibm.com

Make sure to include the following in your note:

� Title and publication number of this book
� Page number or topic to which your comment applies.

Readers' Comments — We'd Like to Hear from You

IBM VSE/Enterprise Systems Architecture
Guide to System Functions
Version 2 Release 4

Publication No. SC33-6711-00

Overall, how satisfied are you with the information in this book?

How satisfied are you that the information in this book is:

Please tell us how we can improve this book:

Thank you for your responses. May we contact you? Ø Yes Ø No

When you send comments to IBM, you grant IBM a nonexclusive right to use or distribute your comments
in any way it believes appropriate without incurring any obligation to you.

Name Address

Company or Organization

Phone No.

Very

Satisfied Satisfied Neutral Dissatisfied
Very

Dissatisfied

Overall satisfaction Ø Ø Ø Ø Ø

Very

Satisfied Satisfied Neutral Dissatisfied
Very

Dissatisfied

Accurate Ø Ø Ø Ø Ø
Complete Ø Ø Ø Ø Ø
Easy to find Ø Ø Ø Ø Ø
Easy to understand Ø Ø Ø Ø Ø
Well organized Ø Ø Ø Ø Ø
Applicable to your tasks Ø Ø Ø Ø Ø

Cut or Fold
Along Line

Cut or Fold
Along Line

Readers' Comments — We'd Like to Hear from You
SC33-6711-00 IBM

Fold and Tape Please do not staple Fold and Tape

NO POSTAGE
NECESSARY
IF MAILED IN THE
UNITED STATES

BUSINESS REPLY MAIL
FIRST-CLASS MAIL PERMIT NO. 40 ARMONK, NEW YORK

POSTAGE WILL BE PAID BY ADDRESSEE

International Business Machines Corporation
Attn: Dept EHJ - BP/003D
6300 Diagonal Highway
Boulder, CO 80301-9151

Fold and Tape Please do not staple Fold and Tape

SC33-6711-00

IBM

File Number: S370/S390-36
Program Number: 5690-VSE

Printed in the United States of America
on recycled paper containing 10%
recovered post-consumer fiber.

SC33-6711-ðð

	Notices
	Programming Interface Information
	Trademarks and Service Marks

	About This Book
	Who Should Use This Book
	How to Use This Book
	Where to Find More Information

	Summary of Changes
	Chapter 1. Storage Management
	Virtual Storage Concept
	Page Management
	Relating Virtual Storage to Locations in Processor Storage

	Address Space Layout
	Virtual Address Spaces versus Real Address Space
	Layout of a Virtual Address Space
	Partition Allocation and Program Size Considerations
	GETVIS Areas
	Layout of a Static Address Space and its GETVIS Areas
	Layout of a Dynamic Address Space and its GETVIS Areas
	Defining Real Storage
	Real Storage Layout

	Executing Programs in Virtual and Real Mode
	Execution in Virtual Mode
	Execution in Real Mode
	Processor Storage Allocation for Real Mode Execution
	Fixing Pages in Processor Storage

	Chapter 2. Starting the System
	ASI Procedures
	Contents of an ASI IPL Procedure
	Contents of ASI JCL Procedures
	Naming Conventions for ASI Procedures

	Starting Up the System
	The ASI Master Procedure ($ASIPROC)
	Cataloging an ASI Master Procedure

	Establishing the Communication Device for IPL
	Console Selection for Initial Installation
	Console Selection when Performing a Normal IPL
	IPL Communication Device List

	Interrupt IPL Processing for Modifications
	Restrictions when Using the Integrated Console
	The IPL Load Parameter
	Interrupt and Restart the IPL Process
	Modifying IPL Parameters

	Loading Phases into the SVA
	SVA (24-Bit) and SVA (31-Bit)
	Automatic SVA Loading During System Startup
	Loading Single Phases or Using a Load List
	Creating an SVA Load List
	Notes on the SVA Command
	Notes on Using the SET SDL Command
	Replacing Phases Stored in the SVA

	User-Defined Processing after IPL

	Chapter 3. Controlling Jobs
	Introduction
	Relating Files to Your Program
	Processing of File Labels
	The Label Information Area

	Defining a Job
	The JOB Statement
	The End-of-Job (/&) Statement

	Job Streams
	PAUSE Statement
	PAUSE Command

	Job Control for Device Assignments
	Logical Units
	Types of Device Assignments
	Device Assignments in a Multiprogramming System
	Shared Assignments
	Additional Assignment Considerations

	Job Control for Label Information
	Label Information for Files on Disk Devices
	Label Information for Files on Magnetic Tape
	Label Information for Files on Diskette Devices
	Storing Label Information
	Adding and Deleting Label Information
	Label Information Search Order

	Controlling Magnetic Tape
	Controlling Printed Output
	Controlling Printed Output on an IBM 3800 Printing Subsystem

	Processing a Program
	Executing Cataloged Programs
	Defining Options for Program Execution
	Communicating with Application Programs via Job Control
	Executing in Virtual or Real Mode
	Handling of System Input and Output

	Using Conditional Job Control
	Statements for Conditional Job Control
	Abnormal Termination of a Job Stream

	Using Cataloged Procedures
	SYSIPT Data in Cataloged Procedures
	Cataloging Partition-Related Procedures
	Several Job Steps in One Procedure
	Using Symbolic Parameters
	Using Nested Procedures

	Chapter 4. Using VSE Libraries
	Introducing the VSE Library Concept
	Library Structure
	VSE Library Types

	Year 2000 Support
	Defining a Library, Sublibrary, or a SYSRES File
	Private Libraries in Non-VSAM-Managed Space
	Private Libraries in VSAM-Managed Space
	Defining Sublibraries
	Defining Additional SYSRES Files

	Establishing a Library Access Definition
	Cataloging Members of Type PHASE
	Cataloging Members of Type DUMP
	Library Chaining
	Permanent versus Temporary Library Access Definitions
	The Search Sequence for Phases
	Resetting a Library Access Definition
	Displaying Library Access Definitions

	Accessing Members Controlled by MSHP
	The Librarian Program
	Return Codes
	Examples of Conditional Command Execution
	Interactive Execution
	Accessing Sublibraries
	Generic Notation

	Librarian Commands
	Backup a SYSRES File, Library, Sublibrary, or Member
	Catalog a Member
	Change the Reuse Attribute of a Sublibrary
	Compare Libraries, Sublibraries, or Members
	Copy or Move a Library, Sublibrary or Member
	Define a Library, Sublibrary, or a SYSRES File
	Delete a Library, Sublibrary, or a Member
	Input Command when Punching a Member
	List Library, Sublibrary, or Member Information
	Lock a Member
	Move a Library, Sublibrary, or Member
	Punch and Re-Catalog a Member
	Release Space for a Library or Sublibrary
	Rename a Sublibrary or a Member
	Restore a SYSRES File, Library, Sublibrary, or a Member
	Search for Members
	Test a Library or Sublibrary
	Unlock a Member
	Update a Member

	Library Access for Application Programs
	Accessing Member Data
	Retrieving Status Information
	Return Code Conventions
	Example of a STATE Member Request
	Example of OPEN/GET/CLOSE Requests

	Processing Macros with the ESERV Program
	High Level Assembler Considerations
	Using the High Level Assembler Library Exit for Processing E-Decks
	Function Description of Phase IPKVX

	Chapter 5. Linking Programs
	Structure of a Program
	Source Books
	Object Modules
	Phases
	Year 2000 Support

	Basic Applications of the Linkage Editor
	Cataloging Phases into a Sublibrary
	Link-Edit and Execute
	Assemble (or Compile), Link-Edit, and Execute

	Processing Requirements for the Linkage Editor
	Symbolic Units Required

	Preparing Input for the Linkage Editor
	Naming a Phase
	Defining a Load Address for a Phase
	Linkage Editor Input - Source and Sequence
	Linkage Editor Storage Requirements

	Using the AUTOLINK Function
	Suppressing the AUTOLINK Feature

	Specifying Linkage Editor Helps
	Obtaining a Storage Map
	Terminating an Erroneous Job

	Designing an Overlay Program
	Relating Control Sections to Phases
	Using LOAD and FETCH Macros

	Pseudo-Register Support
	Overview
	Implementation Details
	Coding Example

	Support of Named Common Control Sections
	How External References are Resolved
	Examples of Linkage Editor Applications
	Catalog a Phase into a Sublibrary
	Link-Edit and Execute Example
	Compile and Execute Example

	Chapter 6. Using VSE Facilities and Options
	User-Written Exit Routines
	Program Exit Routines

	Writing an IPL Exit Routine
	Writing a Job Control Exit Routine
	Multiple Job Control Exit Routines

	Writing a Job Accounting Interface Routine
	Job Accounting Information
	Programming Considerations
	Tailoring the Program

	Checkpointing Facility
	Restarting a Program from a Checkpoint

	Using Timer Services
	Time-of-Day Clock
	Interval Timer

	DASD Sharing with Multiple VSE Systems
	Reserving Devices for Exclusive Use
	Resource Locking
	Lock Communication File
	How to Initialize a Shared VSE Environment
	DASD Sharing under VM
	Special Considerations for Shared Libraries
	Recorder, Hardcopy, and History Files in a DASD Sharing Environment
	An Example of a Two-System Installation
	Error Recovery after System Breakdown

	Designing Programs for Virtual Mode Execution
	Programming Hints for Reducing Page Faults
	Using Virtual Storage Macros
	Coding for the Shared Virtual Area

	Appendix A. Understanding Syntax Diagrams
	Glossary
	Index

